Skip to main content
Log in

The Ulm method under mild differentiability conditions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The Ulm method is considered to approximate a solution of a nonlinear operator equation F(x) = 0. We study the convergence of this method when F′ is ω-conditioned and prove that the R-order of convergence is at least 1 + p if ω is quasi-homogeneous of type ω(tz)≤ t pω(z), for z > 0, tϵ[0,1] and pϵ[0,1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyros I.K. (1993). Some methods for finding error bounds for Newton-like methods under mild differentiability conditions. Acta Math. Hung. 61(3–4): 183–194

    Article  MATH  Google Scholar 

  2. Argyros I.K. (1998). Newton-like methods under mild differentiability conditions with error analysis. Bull. Austral. Math. Soc. 37: 131–147

    Article  Google Scholar 

  3. Diaconu, A.: Sur la manière d’obtenir et sue convergence de certains méthodes itératives, Seminar on Functional Analysis and Numerical Methods, Preprint 87-1, Univ. “Babes-Bolyai”, Cluj-Napoca, pp. 25–74 (1987)

  4. Ezquerro J.A. and Hernández M.A. (2002). Generalized differentiability conditons for Newton’s method. IMA J. Numer. Anal. 22: 187–205

    Article  MATH  MathSciNet  Google Scholar 

  5. Hald O.H. (1975). On a Newton-Moser type method. Numer. Math. 23: 411–425

    Article  MATH  MathSciNet  Google Scholar 

  6. Hernández M.A. (2001). The Newton method for operators with Hölder continuous first derivative. J. Optim. Theory Appl. 109(3): 631–648

    Article  MATH  MathSciNet  Google Scholar 

  7. Moser J. (1973). Stable and random motions in dynamical systems with special emphasis on celestial mechanics, Herman Weil Lectures, Annals of Mathematics Studies vol. 77. Princeton Universty Press, Princeton

    Google Scholar 

  8. Ortega J.M. (1968). The Newton-Kantorovich theorem. Am. Math. Mon. 75: 658–660

    Article  MATH  MathSciNet  Google Scholar 

  9. Petzeltova H. (1980). Remark on a Newton-Moser type method. Comment. Math Univ. Carol. 21: 719–725

    MATH  MathSciNet  Google Scholar 

  10. Potra F.A. and Pták V. (1983). Nondiscrete induction and an inversion-free modification of Newton’s method. Čas. pro pěstováni Mat. 108: 333–341

    MATH  Google Scholar 

  11. Potra F.A. and Pták V. (1984). Nondiscrete Induction and Iterative Processes. Pitman, New York

    MATH  Google Scholar 

  12. Ulm S. (1967). On iterative methods with successive aproximation of the inverse operator (in Russian). Izv. Akad. Nauk Est. SSR 16: 403–411

    MathSciNet  Google Scholar 

  13. Zehnder E.J. (1974). A remark about Newton’s method. Comm. Pure Appl. Math. 27: 361–366

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Ezquerro.

Additional information

Preparation of this paper was partly supported by the Ministry of Education and Science (MTM 2005-03091).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezquerro, J.A., Hernández, M.A. The Ulm method under mild differentiability conditions. Numer. Math. 109, 193–207 (2008). https://doi.org/10.1007/s00211-008-0144-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0144-z

Mathematics Subject Classification (2000)