Skip to main content
Log in

On optimal condition numbers for Markov chains

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Let T and \({\tilde{T}=T-E}\) be arbitrary nonnegative, irreducible, stochastic matrices corresponding to two ergodic Markov chains on n states. A function κ is called a condition number for Markov chains with respect to the (α, β)–norm pair if \({\|\pi-\tilde{\pi}\|_\alpha \leq \kappa(T)\|E\|_\beta}\). Here π and \({\tilde \pi}\) are the stationary distribution vectors of the two chains, respectively. Various condition numbers, particularly with respect to the (1, ∞) and (∞, ∞)-norm pairs have been suggested in the literature. They were ranked according to their size by Cho and Meyer in a paper from 2001. In this paper we first of all show that what we call the generalized ergodicity coefficient \({\tau_p(A^\#)={\rm sup}_{y^{t}e=0} \frac{\|y^tA^\#\|_p}{\|y\|_1}}\), where e is the n-vector of all 1’s and A # is the group generalized inverse of A = I − T, is the smallest condition number of Markov chains with respect to the (p, ∞)-norm pair. We use this result to identify the smallest condition number of Markov chains among the (∞, ∞) and (1, ∞)-norm pairs. These are, respectively, κ 3 and κ 6 in the Cho–Meyer list of 8 condition numbers. Kirkland has studied κ 3(T). He has shown that \({\kappa_3(T)\geq\frac{n-1}{2n}}\) and he has characterized transition matrices for which equality holds. We prove here again that 2κ 3(T) ≤ κ(6) which appears in the Cho–Meyer paper and we characterize the transition matrices T for which \({\kappa_6(T)=\frac{n-1}{n}}\). There is actually only one such matrix: T = (J n  − I)/(n − 1), where J n is the n × n matrix of all 1’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher K., Rothblum U.: Using Gauss–Jordan elimination to compute the index, generalized nullspace, and Drazin inverse. Lin. Alg. Appl. 85, 221–239 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben-Israel A., Greville T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

    Google Scholar 

  3. Berman A., Plemmons R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM Publications, Philadelphia (1994)

    MATH  Google Scholar 

  4. Campbell S.L., Meyer C.D.: Generalized Inverses of Linear Transformations. Dover Publications, New York (1991)

    MATH  Google Scholar 

  5. Cho G.E., Meyer C.D.: Markov chain sensitivity measured by mean first passage times. Lin. Alg. Appl. 316, 21–28 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cho G.E., Meyer C.D.: Comparison of perturbation bounds for the stationary distribution of a Markov chain. Lin. Alg. Appl. 335, 137–150 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dobrushin, R.L.: Central limit theorem for non-stationary Markov chains, I, II. Theory Probab. Appl. 1, 65–80, 329–383 (1956)

    Google Scholar 

  8. Feller W.: An Introduction to Probability Theory and its Applications, vol. I. Wiley, New York (1960)

    Google Scholar 

  9. Funderlic R., Meyer C.: Sensitivity of the stationary distribution vector for an ergodic Markov chain. Lin. Alg. Appl. 76, 1–17 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Golub G.H., Meyer C.D.: Using the QR-factorization and group inversion to compute, differentiate, and estimate the sensitivity of stationary probabilities for Markov chains. SIAM J. Alg. Discrete Meth. 7, 273–281 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hartfiel D.J., Meyer C.D.: On the structure of stochastic matrices with a subdominant eigenvalue near 1. Lin. Alg. Appl. 272, 193–203 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hartwig R.: A method for calculating A d. Math. Japon. 26, 37–43 (1981)

    MATH  MathSciNet  Google Scholar 

  13. Haviv M., Vander Heyden L.: Perturbation bounds for the stationary probabilities of a finite Markov chain. Adv. Appl. Prob. 16, 804–818 (1984)

    Article  MATH  Google Scholar 

  14. Higham N.J., Night P.A.: Componentwise error analysis for stationary iterative methods, in Linear algebra, Markov chains, and queueing models. Inst. Math. Appl. Minnieap. 48, 29–46 (1993)

    Google Scholar 

  15. Ipsen I., Meyer C.: Uniform stability of Markov chains. SIAM J. Matrix Anal. Appl. 15, 1061–1074 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kemeny J.G., Snell J.L.: Finite Markov Chains. Van Nostrand, Princeton (1960)

    MATH  Google Scholar 

  17. Kirkland S.J.: On a question concerning condition numbers for Markov chains. SIAM J. Matrix Anal. Appl. 23, 1109–1119 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kirkland, S.J., Neumann, M.: The case of equality in the Dobrushin–Deutsch–Zenger bound. Lin. Alg. Appl. (2008) (submitted)

  19. Kirkland S., Neumann M., Shader B.: Applications of Pazs inequality to perturbation bounds for Markov chains. Lin. Alg. Appl. 268, 183–196 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kirkland S., Neumann M., Xu J.: Transition matrices for well-conditioned Markov chains. Lin. Alg. Appl. 424, 118–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Meyer C.D.: The role of the group generalized inverse in the theory of finite Markov chains. SIAM Rev. 17, 443–464 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Meyer C.D.: The condition of a finite Markov chain and perturbation bounds for the limiting probabilities. SIAM J. Alg. Discrete Meth. 1, 273–283 (1980)

    Article  MATH  Google Scholar 

  23. Meyer C.D.: Sensitivity of the stationary distribution of a Markov chain. SIAM J. Matrix Anal. Appl. 15, 715–728 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meyer C.D.: Matrix Analysis and Applied Linear Algebra. SIAM Publications, Philadelphia (2000)

    MATH  Google Scholar 

  25. Meyer C.D., Shoaf J.M.: Updating finite Markov chains by using techniques of group matrix inversion. J. Stat. Comput. Simul. 11, 163–181 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rothblum U., Tan C.-P.: Upper bounds on the maximum modulus of subdominant eigenvlaues. of nonnegative matrices. Lin. Alg. Appl. 66, 45–86 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schweitzer P.: Perturbation theory and finite Markov chains. J. Appl. Probab. 5, 410–413 (1968)

    Article  MathSciNet  Google Scholar 

  28. Seneta E.: Non-Negative Matrices and Markov Chains. Springer, New York (1981)

    MATH  Google Scholar 

  29. Seneta E.: Perturbation of the stationary distribution measured by ergodicity coefficients. Adv. Appl. Probab. 20, 228–230 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seneta E.: Sensitivity analysis, ergodicity coefficients, and rank-one updates for finite Markov chains. In: Stewart, W.J.(eds) Numerical Solution of Markov Chains, Marcel Dekker, New York (1991)

    Google Scholar 

  31. Stewart G.W.: Gaussian elimination, perturbation theory, and Markov chains, in Linear algebra, Markov chains, and queueing models. Inst. Math. Appl. Minneap. 48, 59–69 (1993)

    Google Scholar 

  32. Varga R.S.: Matrix Iterative Analysis, Second Revised and Expanded Edition. Springer, Heidelberg (2000)

    Google Scholar 

  33. Wilkinson J.H.: Note on the practical significance of the Drazin inverse, in Recent applications of generalized inverses. Res. Notes Math. 66, 82–99 (1982)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Neumann.

Additional information

This research was supported in part by NSERC under Grant OGP0138251 and NSA Grant No. 06G–232.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirkland, S.J., Neumann, M. & Sze, NS. On optimal condition numbers for Markov chains. Numer. Math. 110, 521–537 (2008). https://doi.org/10.1007/s00211-008-0172-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0172-8

Mathematics Subject Classification (2000)

Navigation