Skip to main content
Log in

Convergence analysis of sectional methods for solving breakage population balance equations-I: the fixed pivot technique

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this work we study the convergence of the fixed pivot techniques (Kumar and Ramkrishna Chem. Eng. Sci. 51, 1311–1332, 1996) for breakage problems. In particular, the convergence is investigated on four different types of uniform and non-uniform meshes. It is shown that the fixed pivot technique is second order convergent on a uniform and non-uniform smooth meshes. Furthermore, it gives first order convergence on a locally uniform mesh. Finally the analysis shows that the method does not converge on a non-uniform random mesh. The mathematical results of convergence analysis are also validated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball J.M., Carr J.: The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation. J. Stat. Phys. 61, 203–234 (1990)

    Article  MathSciNet  Google Scholar 

  2. Costa F.P.D.: A finite-dimensional dynamical model for gelation in coagulation processes. J. Nonlin. Sci. 8, 619–653 (1998)

    Article  MATH  Google Scholar 

  3. Dubovskǐ P.B., Galkin V.A., Stewart I.W.: Exact solutions for the coagulation-fragmentation equations. J. Phys. A Math. Gen. 25, 4737–4744 (1992)

    Article  Google Scholar 

  4. Dubovskǐ P.B., Stewart I.W.: Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Meth. Appl. Sci. 19, 571–591 (1996)

    Article  Google Scholar 

  5. Everson R.C., Eyre D., Campbell Q.P.: Spline method for solving continuous batch grinding and similarity equations. Comput. Chem. Eng. 21, 1433–1440 (1997)

    Article  Google Scholar 

  6. Filbet F., Laurençot P.: Mass-conserving solutions and non-conservative approximation to the smoluchowski coagulation equation. Archiv der Mathematik 83, 558–567 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hill P.J., Ng K.M.: New discretization procedure for the breakage equation. AIChE J. 41, 1204–1216 (1995)

    Article  Google Scholar 

  8. Hundsdorfer W., Verwer J.G.: Numerical solution of time-dependent advection–diffusion-reaction equations, 1st edn. Springer, New York (2003)

    MATH  Google Scholar 

  9. Kostoglou M., Karabelas A.J.: An assessment of low-order methods for solving the breakage equation. Powder Technol. 127, 116–127 (2002)

    Article  Google Scholar 

  10. Kostoglou M., Karabelas A.J.: Optimal low order methods of moments for solving the fragmentation equation. Powder Technol. 143(144), 280–290 (2004)

    Google Scholar 

  11. Kostoglou M., Karabelas A.J.: On the self similar solution of fragmentation equation: Numerical evaluation with implication for the inverse problem. J. Colloid Interface Sci. 284, 571–581 (2005)

    Article  Google Scholar 

  12. Kumar J., Peglow M., Warnecke G., Heinrich S.: An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technol. 179, 205–228 (2007)

    Google Scholar 

  13. Kumar J., Peglow M., Warnecke G., Heinrich S., Mörl L.: Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chem. Eng. Sci. 61, 3327–3342 (2006)

    Article  Google Scholar 

  14. Kumar, J., Warnecke, G.: Convergence analysis of sectional methods for solving breakage population balance equation-II. The cell average technique. Accepted for publication in Numerische Mathematik (2008)

  15. Kumar, J., Warnecke, G., Peglow, M., Heinrich, S.: Comparison of numerical methods for solving population balance equations incorporating aggregation and breakage. Powder Technol. (in press, 2008)

  16. Kumar S., Ramkrishna D.: On the solution of population balance equations by discretization-I. A fixed pivot technique. Chem. Eng. Sci. 51, 1311–1332 (1996)

    Article  Google Scholar 

  17. Kumar S., Ramkrishna D.: On the solution of population balance equations by discretization-II. A moving pivot technique. Chem. Eng. Sci. 51, 1333–1342 (1996)

    Article  Google Scholar 

  18. Lamb W.: Existence and uniqueness results for the continuous coagulation and fragmentation equation. Math. Meth. Appl. Sci. 27, 703–721 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Laurençot P.: On a class of continuous coagulation–fragmentation equations. J. Diff. Eq. 167, 245–274 (2000)

    Article  MATH  Google Scholar 

  20. Lee M.H.: On the validity of the coagulation equation and the nature of runaway growth. Icarus 143, 74–86 (2000)

    Article  Google Scholar 

  21. McLaughlin D.J., Lamb W., McBride A.C.: An existence and uniqueness result for a coagulation and multiple-fragmentation equation. SIAM J. Math. Anal. 28, 1173–1190 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. McLaughlin D.J., Lamb W., McBride A.C.: Existence and uniqueness results for the non-autonomous coagulation and multiple-fragmentation equation. Math. Meth. Appl. Sci. 21, 1067–1084 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mishra B.K.: Monte Carlo simulation of particle breakage process during grinding. Powder Technol. 110, 246–252 (2000)

    Article  Google Scholar 

  24. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C++, 2nd edn. Cambridge University Press, The Edinburgh Building, Cambridge (2002)

  25. Vanni M.: Discretization procedure for the breakage equation. AIChE J. 45, 916–919 (1999)

    Article  Google Scholar 

  26. Vanni M.: Approximate population balance equations for aggregation-breakage processes. J. Collid Interface Sci. 221, 143–160 (2002)

    Article  Google Scholar 

  27. Ziff R.M.: New solution to the fragmentation equation. J. Phys. A Math. Gen. 24, 2821–2828 (1991)

    Article  MathSciNet  Google Scholar 

  28. Ziff R.M., McGrady E.D.: The kinetics of cluster fragmentation and depolymerization. J. Phys. A Math. Gen. 18, 3027–3037 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, J., Warnecke, G. Convergence analysis of sectional methods for solving breakage population balance equations-I: the fixed pivot technique. Numer. Math. 111, 81–108 (2008). https://doi.org/10.1007/s00211-008-0174-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0174-6

Mathematics Subject Classification (2000)

Navigation