Skip to main content
Log in

Optimality of multilevel preconditioning for nonconforming P1 finite elements

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We prove the optimality of hierarchical and BPX-type preconditioners for finite element discretizations with nonconforming P1 finite elements. Such preconditioners were proposed about 15 years ago, and until now only suboptimal estimates of their preconditioning properties have been available. The main new tool is an improved Bernstein type inequality for an associated subdivision process generated by the prolongations which allows us to give an asymptotically optimal upper bound for the spectrum of the preconditioned systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bramble J.: Multigrid Methods, Pitman Research Notes in Mathematics, vol. 294. Longman, London (1993)

    Google Scholar 

  2. Brenner S.: Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comp. 68, 25–53 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenner S.: Convergence of the multigrid V-cycle algorithms for second order boundary value problems without full elliptic regularity. Math. Comp. 71, 507–525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brenner S.: Smoothers, mesh dependent norms, interpolation and multigrid. Appl. Numer. Math. 43, 45–56 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. Mem. Am. Math. Soc., vol. 93. AMS, Providence (1991)

  6. Chen Z.: The analysis of intergrid transfer operators and multigrid methods for nonconforming finite elements. Electron. Trans. Numer. Anal. 5, 78–96 (1997)

    Google Scholar 

  7. Chen Z.: On the convergence of Galerkin-multigrid methods for nonconforming finite elements. East-West J. Numer. Math. 7, 79–107 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Chen Z., Kwak Do.Y.: Convergence of multigrid methods for nonconforming finite elements without regularity assumptions. Comp. Appl. Math. 17, 283–302 (1998)

    MATH  MathSciNet  Google Scholar 

  9. Chen Z., Oswald P.: Multigrid and multilevel methods for nonconforming Q1 elements. Math. Comp. 67, 667–693 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dahmen W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  11. Dyn N., Levin D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jia R.-Q., Jiang Q.: Spectral analysis of the transition operator and its application to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24, 1071–1109 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang Q., Oswald P.: Triangular \({\sqrt{3}}\) -subdivision schemes: the regular case. J. Comput. Appl. Math. 156, 47–75 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Kang K.S.: Covolume-based intergrid transfer operators in P1 nonconforming multigrid method. Appl. Numer. Math. 51, 47–67 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kang K.S., Lee S.Y.: New intergrid transfer operator in multigrid method for P1-nonconforming finite element method. Appl. Math. Comput. 100, 139–149 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Oswald P.: On a hierarchical basis multilevel method with nonconforming P1 elements. Numer. Math. 62, 189–212 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Oswald P.: Multilevel Finite Element Approximation: Theory and Applications. Teubner, Stuttgart (1994)

    MATH  Google Scholar 

  18. Oswald P.: Intergrid transfer operators and multilevel preconditioners for nonconforming discretizations. Appl. Numer. Math. 23, 139–158 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Protasov V.Yu.: A generalized joint spectral radius: the geometrical approach. Izv. Math. 61, 995–1030 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shen Z.: Refinable function vectors. SIAM J. Math. Anal. 29, 235–250 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xu J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer. 285–326 (1993)

  23. Yserentant H.: On the multilevel splitting of finite element spaecs. Numer. Math. 49, 379–412 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zhou D.X.: The p-norm joint spectral radius for even integers. Methods Appl. Anal. 5, 39–54 (1998)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Oswald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oswald, P. Optimality of multilevel preconditioning for nonconforming P1 finite elements. Numer. Math. 111, 267–291 (2008). https://doi.org/10.1007/s00211-008-0182-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0182-6

Mathematics Subject Classification (2000)