Skip to main content
Log in

Finite element approximation of elliptic control problems with constraints on the gradient

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider an elliptic optimal control problem with control constraints and pointwise bounds on the gradient of the state. We present a tailored finite element approximation to this optimal control problem, where the cost functional is approximated by a sequence of functionals which are obtained by discretizing the state equation with the help of the lowest order Raviart–Thomas mixed finite element. Pointwise bounds on the gradient variable are enforced in the elements of the triangulation. Controls are not discretized. Error bounds for control and state are obtained in two and three space dimensions. A numerical example confirms our analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bahriawati, C., Carstensen, C.: Three Matlab Implementations Of The Lowest-Order Raviart-Thomas MFEM With A Posteriori Error Control. Comput. Methods Appl. Math. 5, 333–361 (2005). Software download at http://www.math.hu-berlin.de/cc/download/public/software/code/Software-4.tar.gz

  3. Brenner S., Scott R.: The Mathematical Theory of Finite Elements, 2nd edn. Springer, New York (2002)

    Google Scholar 

  4. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics vol. 15.. Springer, New York (1991)

    Google Scholar 

  5. Casas E., Fernández L.: Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state. Appl. Math. Optim. 27, 35–56 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casas E., Mateos M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comp. Appl. Math. 21, 67–100 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Deckelnick K., Hinze M.: Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45(5), 1937–1953 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deckelnick, K., Hinze, M.: A finite element approximation to elliptic control problems in the presence of control and state constraints. Hamburger Beiträge zur Angewandten Mathematik, HBAM2007-01 (2007, preprint)

  9. Demlow A.: Localized pointwise error estimates for mixed finite element methods. Math. Comp. 73, 1623–1653 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gastaldi L., Nochetto R.H.: On L –accuracy of mixed finite element methods for second order elliptic problems. Math. Apl. Comput. 7, 13–39 (1988)

    MATH  MathSciNet  Google Scholar 

  11. Gastaldi L., Nochetto R.H.: Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. RAIRO Modél. Math. Anal. Numér. 23, 103–128 (1989)

    MATH  MathSciNet  Google Scholar 

  12. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Heidelberg (1983)

    Google Scholar 

  13. Hinze M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. J. Computat. Optim. Appl. 30, 45–63 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Johnson C., Thomée V.: Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Anal. Numer. 15, 41–78 (1981)

    MATH  MathSciNet  Google Scholar 

  15. Meyer, C.: Error estimates for the finite element approximation of an elliptic control problem with pointwise constraints on the state and the control. WIAS Preprint 1159 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hinze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deckelnick, K., Günther, A. & Hinze, M. Finite element approximation of elliptic control problems with constraints on the gradient. Numer. Math. 111, 335–350 (2009). https://doi.org/10.1007/s00211-008-0185-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0185-3

Mathematics Subject Classification (2000)