Skip to main content
Log in

A local least-squares method for solving nonlinear partial differential equations of second order

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper a mesh-free method for the treatment of time-independent and time-dependent nonlinear PDEs of second order is presented. The basic idea of the discretization is a local least-squares approximation, similar to the moving least-squares approach in data approximation. However, in our approach the PDE is incorporated as an additional minimization constraint. The discretization leads to a fixed-point problem, which is solved by iteration. Because of the local nature of the method only small dimensional matrix inversions have to be done. The approximation error of the discretization—even on unstructured meshes—is comparable to respective versions of finite elements. As a by-product the method provides an a posteriori measure for the local approximation error. We discuss implementational aspects and present numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Armentano M.G.: Error estimates in Sobolev spaces for moving least square approximations. SIAM J. Numer. Anal. 39, 38–51 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuška I., Melenk J.M.: The partition of unity method. Int. J. Numer. Meth. Eng. 40, 727–758 (1997)

    Article  MATH  Google Scholar 

  4. Behrens, J., Iske, A., Käser, M.: Adaptive meshfree method of backward characteristics for nonlinear transport equations. In: Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2003)

  5. Belytschko T., Lu Y., Gu L.: Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buhmann M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  7. Chung K.C., Yao T.H.: On lattices admitting unique Lagrange interpolations. SIAM J. Numer. Anal. 14, 735–743 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duarte C.A., Oden J.T.: hp-cloud and hp-meshless method. Numer. Meth. Part. Diff. Eq. 12, 673–705 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gasca M., Sauer T.: Polynomial interpolation in several variables. Adv. Comp. Math. 12, 377–410 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gingold R.A., Monaghan J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Month. Notices R. Astronom. Soc. 181, 375–389 (1977)

    MATH  Google Scholar 

  11. Griebel M., Schweitzer M.A.: A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs. SIAM J. Sci. Comput. 22(3), 853–890 (2001)

    Article  MathSciNet  Google Scholar 

  12. Griebel M., Schweitzer M.A.: A particle-partition of unity method—Part II: efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Griebel M., Schweitzer M.A.: A particle-partition of unity method—Part II: efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Griebel M., Schweitzer M.A.: Meshfree Methods for Partial Differential Equations. Springer, Berlin (2003)

    Google Scholar 

  15. Griebel M., Schweitzer M.A.: Meshfree Methods for Partial Differential Equations II. Springer, Berlin (2005)

    MATH  Google Scholar 

  16. Griebel M., Schweitzer M.A.: Meshfree Methods for Partial Differential Equations III. Springer, Berlin (2007)

    MATH  Google Scholar 

  17. Kuhnert J., Tiwari S.: Grid free method for solving the Poisson equation. Berichte des Fraunhofer ITWM 25, 1–12 (2001)

    Google Scholar 

  18. Lancaster P., Salkauskas K.: Surfaces generated by moving least squares methods. Math. Comput. 155, 141–158 (1981)

    MathSciNet  Google Scholar 

  19. Liu W.K., Jun S., Zhang Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids 20, 1081–1106 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Melenk J.M., Babuška I.: The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139, 289–314 (1996)

    Article  MATH  Google Scholar 

  21. Monaghan J.J.: Why particle methods works. SIAM J. Sci. Stat. Comput. 3, 422–433 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mount, D.M.: ANN programming manual (1998)

  23. Onate E., Perazzo F., Miguel J.: A finite point method for elasticity problems. Comput. Struct. 79, 2143–2149 (2001)

    Article  Google Scholar 

  24. Quarteroni A., Sacco R., Saleri F.: Numerical Mathematics. Springer, New York (2000)

    Google Scholar 

  25. Samet H.: The design and analysis of spatial data. Addision-Wesley, Reading (1990)

    Google Scholar 

  26. Schaback, R.: Reconstruction of multivariate functions from scattered data (1997). http://www.num.math.uni-goettingen.de/schaback/teaching/books.html

  27. Strang G., Fix G.J.: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  28. Wendland H.: Meshless Galerkin methods using radial basis functions. Math. Comput. 68, 1521–1531 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wendland H.: Scattered data approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  30. Zou Y., Kevrekidis I.G., Ghanem R.G.: Equation-free particle-based computations: coarse projective integration and coarse dynamic renormalization in 2d. Ind. Eng. Chem. 45, 7002–7014 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Heider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heider, P. A local least-squares method for solving nonlinear partial differential equations of second order. Numer. Math. 111, 351–375 (2009). https://doi.org/10.1007/s00211-008-0192-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0192-4

Mathematics Subject Classification (2000)