Abstract
In this paper a mesh-free method for the treatment of time-independent and time-dependent nonlinear PDEs of second order is presented. The basic idea of the discretization is a local least-squares approximation, similar to the moving least-squares approach in data approximation. However, in our approach the PDE is incorporated as an additional minimization constraint. The discretization leads to a fixed-point problem, which is solved by iteration. Because of the local nature of the method only small dimensional matrix inversions have to be done. The approximation error of the discretization—even on unstructured meshes—is comparable to respective versions of finite elements. As a by-product the method provides an a posteriori measure for the local approximation error. We discuss implementational aspects and present numerical simulations.
Similar content being viewed by others
References
Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)
Armentano M.G.: Error estimates in Sobolev spaces for moving least square approximations. SIAM J. Numer. Anal. 39, 38–51 (2001)
Babuška I., Melenk J.M.: The partition of unity method. Int. J. Numer. Meth. Eng. 40, 727–758 (1997)
Behrens, J., Iske, A., Käser, M.: Adaptive meshfree method of backward characteristics for nonlinear transport equations. In: Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering. Springer, Heidelberg (2003)
Belytschko T., Lu Y., Gu L.: Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 37, 229–256 (1994)
Buhmann M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)
Chung K.C., Yao T.H.: On lattices admitting unique Lagrange interpolations. SIAM J. Numer. Anal. 14, 735–743 (1977)
Duarte C.A., Oden J.T.: hp-cloud and hp-meshless method. Numer. Meth. Part. Diff. Eq. 12, 673–705 (1996)
Gasca M., Sauer T.: Polynomial interpolation in several variables. Adv. Comp. Math. 12, 377–410 (2000)
Gingold R.A., Monaghan J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Month. Notices R. Astronom. Soc. 181, 375–389 (1977)
Griebel M., Schweitzer M.A.: A particle-partition of unity method for the solution of elliptic, parabolic, and hyperbolic PDEs. SIAM J. Sci. Comput. 22(3), 853–890 (2001)
Griebel M., Schweitzer M.A.: A particle-partition of unity method—Part II: efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002)
Griebel M., Schweitzer M.A.: A particle-partition of unity method—Part II: efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23(5), 1655–1682 (2002)
Griebel M., Schweitzer M.A.: Meshfree Methods for Partial Differential Equations. Springer, Berlin (2003)
Griebel M., Schweitzer M.A.: Meshfree Methods for Partial Differential Equations II. Springer, Berlin (2005)
Griebel M., Schweitzer M.A.: Meshfree Methods for Partial Differential Equations III. Springer, Berlin (2007)
Kuhnert J., Tiwari S.: Grid free method for solving the Poisson equation. Berichte des Fraunhofer ITWM 25, 1–12 (2001)
Lancaster P., Salkauskas K.: Surfaces generated by moving least squares methods. Math. Comput. 155, 141–158 (1981)
Liu W.K., Jun S., Zhang Y.F.: Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids 20, 1081–1106 (1995)
Melenk J.M., Babuška I.: The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139, 289–314 (1996)
Monaghan J.J.: Why particle methods works. SIAM J. Sci. Stat. Comput. 3, 422–433 (1982)
Mount, D.M.: ANN programming manual (1998)
Onate E., Perazzo F., Miguel J.: A finite point method for elasticity problems. Comput. Struct. 79, 2143–2149 (2001)
Quarteroni A., Sacco R., Saleri F.: Numerical Mathematics. Springer, New York (2000)
Samet H.: The design and analysis of spatial data. Addision-Wesley, Reading (1990)
Schaback, R.: Reconstruction of multivariate functions from scattered data (1997). http://www.num.math.uni-goettingen.de/schaback/teaching/books.html
Strang G., Fix G.J.: An analysis of the finite element method. Prentice-Hall, Englewood Cliffs (1973)
Wendland H.: Meshless Galerkin methods using radial basis functions. Math. Comput. 68, 1521–1531 (1999)
Wendland H.: Scattered data approximation. Cambridge University Press, Cambridge (2005)
Zou Y., Kevrekidis I.G., Ghanem R.G.: Equation-free particle-based computations: coarse projective integration and coarse dynamic renormalization in 2d. Ind. Eng. Chem. 45, 7002–7014 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Heider, P. A local least-squares method for solving nonlinear partial differential equations of second order. Numer. Math. 111, 351–375 (2009). https://doi.org/10.1007/s00211-008-0192-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0192-4