Skip to main content
Log in

Numerical solution of some partial differential equations by means of a deterministic method of approximate functional integration

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A numerical method of solution of some partial differential equations is presented. The method is based on representation of Green functions of the equations in the form of functional integrals and subsequent approximate calculation of the integrals with the help of a deterministic approach. In this case the solution of the equations is reduced to evaluation of usual (Riemann) integrals of relatively low multiplicity. A procedure allowing one to increase accuracy of the solutions is suggested. The features of the method are investigated on examples of numerical solution of the Schrödinger equation and related diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman R.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  MathSciNet  Google Scholar 

  2. Feynman R., Hibbs A.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  3. Kac M.: On the distribution of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)

    Article  MATH  Google Scholar 

  4. Kac M.: Probability and Related Topics in the Physical Sciences. Interscience, New York (1959)

    Google Scholar 

  5. Gelfand I., Yaglom A.: Integration in functional spaces and its applications in quantum physics (in Russian). Usp. Mat. Nauk 67, 77–114 (1956)

    MathSciNet  Google Scholar 

  6. Gelfand I., Yaglom A.: Integration in functional spaces and its applications in quantum physics. J. Math. Phys. 1, 48–69 (1960)

    Article  Google Scholar 

  7. Alimov A.: On the relationship between functional integrals and differential equations. Theor. Math. Phys. 11, 434–439 (1972)

    Article  MathSciNet  Google Scholar 

  8. Freidlin M.: Functional Integration and Partial Differential Equations. Princeton University Press, New Jersey (1985)

    MATH  Google Scholar 

  9. Dalecky Yu., Fomin S.: Measures and Differential Equations in Infinite-Dimensional Space. Kluwer, Dordrecht (1991)

    Google Scholar 

  10. Konheim A., Miranker W.: Numerical evaluation of Wiener integrals. Math. Comput. 21, 49–65 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cameron R.: A “Simpson’s rule” for the numerical evaluation of Wiener integrals in function space. Duke Math. J. 18, 111–130 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fosdick L., Jordan H.: Approximation of a conditional Wiener integral. J. Comput. Phys. 3, 1–17 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  13. Egorov, A., Yanovich, L.: On approximate calculation of integrals according to Gaussian measure. Doklady of the Academy of Sciences of the BSSR, vol. 14, No.10, p. 873 (1970)

  14. Zhidkov, E., Lobanov, Yu., Sidorova, O.: Communication of the Joint Institute for Nuclear Research, P11-83-867, Dubna (1983)

  15. Lobanov Yu.: Computation of multiple functional integrals in quantum physics. J. Comput. Appl. Math. 70, 145–160 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lobanov Yu.: Deterministic computation of functional integrals. Comput. Phys. Commun. 99, 59–72 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yanovich, L.: Approximate Evaluation of Functional Integrals with Respect to Gaussian measures. Nauka i Technika, Minsk (1976)

  18. Egorov A., Sobolevsky P., Yanovich L.: Functional Integrals: Approximate Evaluation and Applications. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  19. Zhidkov E., Lobanov Yu.: The method of approximate functional integration in mathematical physics. Phys. Part. Nucl. 27, 72–99 (1996)

    Google Scholar 

  20. Greguš M., Lobanov Yu., Sidorova O., Zhidkov E.: On the deterministic computation of functional integrals in application to quantum mechanical problems. J. Comput. Appl. Math. 20, 247 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Korobov N.: Number-theoretical methods in approximate analysis. Fizmatgiz, Moscow (1963)

    Google Scholar 

  22. Rushai, V.: Communication of the Joint Institute for Nuclear Research, P11-2003-113, Dubna (2003)

  23. Sobolev S., Vaskevich V.: The Theory of Cubature Formulas. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  24. Evans M., Swartz T.: Approximating Integrals Via Monte Carlo and Deterministic Methods. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  25. Jersak, J.: Path integral method in quantum theory. In: Shaukat, A. (ed.) Path Integral Method, Lattice Gauge Theory and Critical Phenomena: Proceedings of the Autumn College on Techniques in Many-Body Problems, Lahore, Oct 31–Nov 17, 1987, pp. 1–67. World Scientific, Singapore (1989)

  26. Cameron R.: A family of integrals serving to connect the Wiener and Feynman integrals. J. Math. Phys. 39, 126–140 (1960)

    MATH  Google Scholar 

  27. Haba Z.: Semiclassical stochastic representation of the Feynman integral. J. Phys. A 27, 6457–6477 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Rushai.

Additional information

The work was supported in part by RFBR Grant 04-01-81011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushai, V.D. Numerical solution of some partial differential equations by means of a deterministic method of approximate functional integration. Numer. Math. 112, 153–167 (2009). https://doi.org/10.1007/s00211-008-0201-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0201-7

Mathematics Subject Classification (2000)

Navigation