Skip to main content

A dual iterative substructuring method with a penalty term

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

An iterative substructuring method with Lagrange multipliers is considered for second order elliptic problems, which is a variant of the FETI-DP method. The standard FETI-DP formulation is associated with the saddle-point problem which is induced from the minimization problem with a constraint for imposing the continuity across the interface. Starting from the slightly changed saddle-point problem by addition of a penalty term with a positive penalization parameter η, we propose a dual substructuring method which is implemented iteratively by the conjugate gradient method. In spite of the absence of any preconditioners, it is shown that the proposed method is numerically scalable in the sense that for a large value of η, the condition number of the resultant dual problem is bounded by a constant independent of both the subdomain size H and the mesh size h. Computational issues and numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrow K.J., Solow R.M. (1958) Gradient methods for constrained maxima with weakened assumptions. In: Arrow K.J., Hurwitz L., Uzawa H.(eds) Studies in Linear and Nonlinear Programming. Stanford University Press, Stanford, pp 166–176

    Google Scholar 

  2. Axelsson O. (1994) Iterative Solution Methods. Cambridge University Press, New York

    MATH  Google Scholar 

  3. Axelsson O., Gustafsson I. (1983) Preconditioning and two-level multigrid methods of arbitrary degree of approximation. Math. Comp. 40: 219–242

    Article  MATH  MathSciNet  Google Scholar 

  4. Bavestrello H., Avery P., Farhat C. (2007) Incorporation of linear multipoint constraints in domain-decomposition-based iterative solvers. Part II: Blending FETI-DP and mortar methods and assembling floating substructures. Comput. Methods Appl. Mech. Eng. 196: 1347–1368

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsekas D.P. (1996) Constrained optimization and Lagrange multiplier methods. Athena Scientific, Belmont

    Google Scholar 

  6. Bramble J.H., Pasciak J.E., Schatz A.H. (1986) The construction of preconditioners for elliptic problems by substructuring. I. Math. Comp. 47: 103–134

    Article  MATH  MathSciNet  Google Scholar 

  7. Farhat C., Lacour C., Rixen D. (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part I: a numerically scalable algorithm. Int. J. Numer. Methods Eng. 43: 997–1016

    Article  MATH  MathSciNet  Google Scholar 

  8. Farhat C., Lesoinne M., Pierson K. (2000) A scalable dual-primal domain decomposition method. Numer. Lin. Alg. Appl. 7: 687–714

    Article  MATH  MathSciNet  Google Scholar 

  9. Farhat C., Mandel J., Roux F.-X. (1994) Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Eng. 115: 365–385

    Article  MathSciNet  Google Scholar 

  10. Farhat C., Roux F.-X. (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32: 1205–1227

    Article  MATH  Google Scholar 

  11. Farhat C., Roux F.-X. (1994) Implicit parallel processing in structural mechanics. Comput. Mech. Adv. 2: 1–124

    Article  MATH  MathSciNet  Google Scholar 

  12. Fiacco A.V., McCormick G.P. (1968) Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York

    MATH  Google Scholar 

  13. Fortin M., Glowinski R. (1983) Augmented Lagrangian Methods. North-Holland, Amsterdam

    MATH  Google Scholar 

  14. Girault V., Raviart P.A. (1986) Finite Element Methods for Navier-Stokes Equations. Springer, Berlin

    MATH  Google Scholar 

  15. Glowinski, R., Le Tallec, P.: Augmented Lagrangian interpretation of the nonoverlapping Schwarz alternating method. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), pp. 224–231. SIAM, Philadelphia (1990)

  16. Gropp W.D., Keyes D.E. (1988) Complexity of parallel implementation of domain decomposition techniques for elliptic partial differential equations. SIAM J. Sci. Stat. Comput. 9: 312–326

    Article  MATH  MathSciNet  Google Scholar 

  17. Hestenes M.R. (1969) Multiplier and gradient methods. J. Optim. Theory Appl. 4: 303–320

    Article  MATH  MathSciNet  Google Scholar 

  18. Iserles A. (1996) A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge

    Google Scholar 

  19. Klawonn A., Widlund O.B., Dryja M. (2002) Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal. 40: 159–179

    Article  MATH  MathSciNet  Google Scholar 

  20. Mandel J. (1990) On block diagonal and Schur complement preconditioning. Numer. Math. 58: 79–93

    Article  MATH  MathSciNet  Google Scholar 

  21. Mandel J., Tezaur R. (1996) Convergence of a substructuring method with Lagrange multipliers. Numer. Math. 73: 473–487

    Article  MATH  MathSciNet  Google Scholar 

  22. Mandel J., Tezaur R. (2001) On the convergence of a dual-primal substructuring method. Numer. Math. 88: 543–558

    Article  MATH  MathSciNet  Google Scholar 

  23. Meyer A. (2006) Basic approach to parallel finite element computations: the DD data splitting. In: Hoffmann K.H., Meyer A.(eds) Parallel Algorithms and Cluster Computing. Springer, Berlin, pp 23–35

    Google Scholar 

  24. Saad Y., Schultz M.H. (1989) Data communication in parallel architectures. Parallel Comput. 11: 131–150

    Article  MATH  MathSciNet  Google Scholar 

  25. Le Tallec P., Sassi T. (1995) Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp. 64: 1367–1396

    Article  MATH  MathSciNet  Google Scholar 

  26. Toselli A., Widlund O.B. (2005) Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Hee Park.

Additional information

This work was partially supported by the SRC/ERC program of MOST/KOSEF(R11-2002-103).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CO., Park, EH. A dual iterative substructuring method with a penalty term. Numer. Math. 112, 89–113 (2009). https://doi.org/10.1007/s00211-008-0202-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0202-6

Mathematics Subject Classification (2000)