Skip to main content
Log in

The rate of convergence of GMRES on a tridiagonal Toeplitz linear system

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The Generalized Minimal Residual method (GMRES) is often used to solve a nonsymmetric linear system Ax = b. But its convergence analysis is a rather difficult task in general. A commonly used approach is to diagonalize A = XΛ X −1 and then separate the study of GMRES convergence behavior into optimizing the condition number of X and a polynomial minimization problem over A’s spectrum. This artificial separation could greatly overestimate GMRES residuals and likely yields error bounds that are too far from the actual ones. On the other hand, considering the effects of both A’s spectrum and the conditioning of X at the same time poses a difficult challenge, perhaps impossible to deal with in general but only possible for certain particular linear systems. This paper will do so for a (nonsymmetric) tridiagonal Toeplitz system. Sharp error bounds on and sometimes exact expressions for residuals are obtained. These expressions and/or bounds are in terms of the three parameters that define A and Chebyshev polynomials of the first kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckermann B., Goreinov S.A., Tyrtyshnikov E.E.: Some remarks on the Elman estimate for GMRES. SIAM J. Matrix Anal. Appl. 27, 772–778 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beckermann B., Kuijlaars A.B.J.: Superlinear CG convergence for special right-hand sides. Electron. Trans. Numer. Anal. 14, 1–19 (2002)

    MATH  MathSciNet  Google Scholar 

  3. Demmel J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  4. Driscoll T.A., Toh K.-C., Trefethen L.N.: From potential theory to matrix iterations in six steps. SIAM Rev. 40, 547–578 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eiermann M.: Fields of values and iterative methods. Linear Algebra Appl. 180, 167–197 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eiermann M., Ernst O.G.: Geometric aspects in the theory of Krylov subspace methods. Acta Numer. 10, 251–312 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eisenstat S.C., Elman H.C., Schultz M.H.: Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20, 345–357 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Elman, H.C.: Iterative Methods for Large, Sparse Nonsymmetric Systems of Linear Equations. Ph.D. thesis, Department of Computer Science, Yale University (1982)

  9. Ernst O.G.: Residual-minimizing Krylov subspace methods for stabilized discretizations of convection-diffusion equations. SIAM J. Matrix Anal. Appl. 21, 1079–1101 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Greenbaum A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  11. Greenbaum A., Pták V., Strakoš Z.: Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl. 17, 465–469 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ipsen I.C.F.: Expressions and bounds for the GMRES residual. BIT 40, 524–535 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, R.-C.: Sharpness in rates of convergence for CG and symmetric Lanczos methods, Technical Report 2005-01 (Department of Mathematics, University of Kentucky, 2005). http://www.ms.uky.edu/~math/MAreport/

  14. Li R.-C.: Convergence of CG and GMRES on a tridiagonal Toeplitz linear system. BIT 47, 577–599 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li R.-C.: Hard cases for conjugate gradient method. Int. J. Info. Sys. Sci. 4, 15–29 (2008)

    MATH  Google Scholar 

  16. Li, R.-C.: On Meinardus’ examples for the conjugate gradient method. Math. Comp. 77, 335–352 (2008) (Electronically published on September 17, 2007)

    Google Scholar 

  17. Liesen J., Rozlozník M., Strakoš Z.: Least squares residuals and minimal residual methods. SIAM J. Sci. Comput. 23, 1503–1525 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liesen J., Strakoš Z.: Convergence of GMRES for tridiagonal Toeplitz matrices. SIAM J. Matrix Anal. Appl. 26, 233–251 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liesen J., Strakoš Z.: GMRES convergence analysis for a convection-diffusion model problem. SIAM J. Sci. Comput. 26, 1989–2009 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Saad Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  21. Saad Y., Schultz M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smith G.D.: Numerical Solution of Partial Differential Equations, 2nd edn. Clarendon Press, Oxford (1978)

    MATH  Google Scholar 

  23. Trefethen, L.N., Pseudospectra of matrices. In: Griffiths, D.F., Watson, G.A. (eds.) Numerical Analysis 1991: Proceedings of the 14th Dundee Conference, June, 1991. Research Notes in Mathematics Series. Longman Press, London (1992)

  24. Trefethen L.N., Bau D. III: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  25. Zavorin I., O’Leary D.P., Elman H.: Complete stagnation of GMRES. Linear Algebra Appl. 367, 165–183 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Cang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, RC., Zhang, W. The rate of convergence of GMRES on a tridiagonal Toeplitz linear system. Numer. Math. 112, 267–293 (2009). https://doi.org/10.1007/s00211-008-0206-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0206-2

Mathematics Subject Classification (2000)

Navigation