Abstract
The method of fundamental solutions (MFS) is a Trefftz–type technique in which the solution of an elliptic boundary value problem is approximated by a linear combination of translates of fundamental solutions with singularities placed on a pseudo–boundary, i.e., a surface embracing the domain of the problem under consideration. In this work, we develop a mathematical framework for the numerical implementation of the MFS in elliptic systems. We obtain density results, with respect to the C ℓ-norms, which establish the applicability of the method in certain systems arising from the theory of elastostatics and thermo-elastostatics. The domains in our density results may possess holes and they satisfy the segment condition.
Similar content being viewed by others
References
Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Pure and Applied Mathematics, vol. 140. Academic Press, Amsterdam (2003)
Aleksidze, M.A.: ΦундаментальΙе функции в приблженньΙх решениях граничньΙх задач. (Russian) [Fundamental functions in approximate solutions of boundary value problems]. Nauka, Moscow (1991)
Alves, C.J.S.: Inverse scattering with spherical incident waves, Mathematical and numerical aspects of wave propagation (Golden, CO, 1998), pp. 502–504. SIAM, Philadelphia (1998)
Berger J.R., Karageorghis A.: The method of fundamental solutions for layered elastic materials. Eng. Anal. Bound. Elem. 25, 877–886 (2001)
Berger J.R., Karageorghis A., Martin P.A.: Stress intensity factor computation using the method of fundamental solutions: mixed–mode problems. Int. J. Numer. Methods Eng. 69(3), 469–483 (2007)
Bogomolny A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)
Browder F.E.: Approximation by solutions of partial differential equations. Amer. J. Math. 84, 134–160 (1962)
Burgess G., Maharejin E.: A comparison of the boundary element and superposition methods. Comput. Struct. 19, 697–705 (1984)
Fairweather G., Karageorghis A.: The method of fundamental solutions for elliptic boundary value problems. Numerical treatment of boundary integral equations. Adv. Comput. Math. 9(1–2), 69–95 (1998)
Fairweather G., Karageorghis A., Martin P.A.: The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27, 759–769 (2003)
Fenner R.T.: A force supersition approach to plane elastic stress and strain analysis. J. Strain Anal. 36, 517–529 (2001)
Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems, Boundary integral methods: numerical and mathematical aspects. Comput. Eng., vol. 1, pp. 103–176. WIT Press/Comput. Mech. Publ., Boston (1999)
Karageorghis A., Fairweather G.: The method of fundamental solutions for axisymmetric elasticity problems. Comput. Mech. 25, 524–532 (2000)
Karageorghis A., Poullikkas A., Berger J.R.: Stress intensity factor computation using the method of fundamental solutions. Comput. Mech. 37, 445–454 (2006)
Karageorghis A., Smyrlis Y.-S.: Matrix decomposition MFS algorithms for elasticity and thermo-elasticity problems in axisymmetric domains. J. Comput. Appl. Math. 206(2), 774–795 (2007)
Karageorghis A., Smyrlis Y.-S., Tsangaris T.: A matrix decomposition MFS algorithm for certain linear elasticity problems. Numer. Algorithms 43(2), 123–149 (2006)
Katsurada M.: A mathematical study of the charge simulation method. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 135–162 (1989)
Kupradze V.D.: Potential methods in the theory of elasticity. Translated from the Russian by H. Gutfreund. Israel Program for Scientific Translations, Jerusalem (1965)
Kupradze V.D., Aleksidze M.A.: An approximate method of solving certain boundary–value problems (in Russian). Soobšč. Akad. Nauk Gruzin. SSR 30, 529–536 (1963)
Kupradze V.D., Aleksidze M.A.: The method of functional equations for the approximate solution of certain boundary value problems. Comput. Methods Math. Phys. 4, 82–126 (1964)
Kupradze, V.D., Gegelia, T.G., Basheleshvili, M.O., Burchuladze, T.V.: Трехмерные задачи матемтической теории упругости и термоупругости. (Russian) [Three-dimensional problems in the mathematical theory of elasticity and thermoelasticity]. Nauka, Moscow (1976)
Maharejin E.: An extension of the superposition method for plane anisotropic elastic bodies. Comput. Struct. 21, 953–958 (1985)
Marin L., Lesnic D.: The method of fundamental solutions for the Cauchy problem in two- dimensional linear elasticity. Int. J. Solids Struct. 41, 3425–3438 (2004)
Mathon R., Johnston R.L.: The approximate solution of elliptic boundary–value problems by fundamental solutions. SIAM J. Numer. Anal. 14(4), 638–650 (1977)
Raamachandran J., Rajamohan C.: Analysis of composite using charge simulation method. Eng. Anal. Bound. Elem. 18, 131–135 (1996)
Redekop D.: Fundamental solutions for the collocation method in planar elastostatics. Appl. Math. Model. 6, 390–393 (1982)
Redekop D., Cheung R.S.W.: Fundamental solutions for the collocation method in three–dimensional elastostatics. Comput. Struct. 26, 703–707 (1987)
Redekop D., Thompson J.C.: Use of fundamental solutions in the collocation method in axisymmetric elastostatics. Comput. Struct. 17, 485–490 (1983)
Reichel L.: On the numerical solution of some two-dimensional electromagnetic interface problems by the boundary collocation method. Comput. Meth. Appl. Mech. Eng. 53, 1–11 (1985)
Reichel, L.: Boundary collocation in Fejér points for computing eigenvalues and eigenfunctions of the Laplacian. In: Saff, E.B. (ed.) Approximation Theory, Tampa. Lecture Notes in Mathematics, vol. #1287, pp. 146–160. Springer, Berlin (1987)
Rudin W.: Functional Analysis. McGraw-Hill, New York (1973)
Smyrlis Y.-S.: The method of fundamental solutions: a weighted least-squares approach. BIT 46(1), 163–194 (2006)
Smyrlis Y.-S.: Approximations by solutions of elliptic equations in semilocal spaces. J. Math. Anal. Appl. 350(1), 122–134 (2009)
Smyrlis, Y.-S.: Applicability and applications of the method of fundamental solutions. Math. Comp. (to appear)
Smyrlis Y.-S., Karageorghis A.: A linear least–squares MFS for certain elliptic problems. Numer. Algorithms 35(1), 29–44 (2004)
Smyrlis, Y.-S., Karageorghis, A.: The under–determined version of the MFS: taking more sources than collocation points (submitted for publication)
Tarkhanov, N.N.: The Cauchy problem for solutions of elliptic equations. Mathematical Topics, vol. 7. Akademie Verlag, Berlin (1995)
Trefftz, E.: Ein Gegenstück zum Ritzschen Verfahren. pp. 131–137, 2er Intern. Kongr. für Techn. Mechanik, Zürich (1926)
Verdera, J.: Removability, capacity and approximation. Complex potential theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, pp. 419–473. Kluwer, Dordrecht (1994)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by a grant of the University of Cyprus.
Rights and permissions
About this article
Cite this article
Smyrlis, YS. Mathematical foundation of the MFS for certain elliptic systems in linear elasticity. Numer. Math. 112, 319–340 (2009). https://doi.org/10.1007/s00211-008-0207-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0207-1