Skip to main content

Mathematical foundation of the MFS for certain elliptic systems in linear elasticity

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The method of fundamental solutions (MFS) is a Trefftz–type technique in which the solution of an elliptic boundary value problem is approximated by a linear combination of translates of fundamental solutions with singularities placed on a pseudo–boundary, i.e., a surface embracing the domain of the problem under consideration. In this work, we develop a mathematical framework for the numerical implementation of the MFS in elliptic systems. We obtain density results, with respect to the C -norms, which establish the applicability of the method in certain systems arising from the theory of elastostatics and thermo-elastostatics. The domains in our density results may possess holes and they satisfy the segment condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Pure and Applied Mathematics, vol. 140. Academic Press, Amsterdam (2003)

  2. Aleksidze, M.A.: ΦундаментальΙе функции в приблженньΙх решениях граничньΙх задач. (Russian) [Fundamental functions in approximate solutions of boundary value problems]. Nauka, Moscow (1991)

  3. Alves, C.J.S.: Inverse scattering with spherical incident waves, Mathematical and numerical aspects of wave propagation (Golden, CO, 1998), pp. 502–504. SIAM, Philadelphia (1998)

  4. Berger J.R., Karageorghis A.: The method of fundamental solutions for layered elastic materials. Eng. Anal. Bound. Elem. 25, 877–886 (2001)

    Article  MATH  Google Scholar 

  5. Berger J.R., Karageorghis A., Martin P.A.: Stress intensity factor computation using the method of fundamental solutions: mixed–mode problems. Int. J. Numer. Methods Eng. 69(3), 469–483 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bogomolny A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Browder F.E.: Approximation by solutions of partial differential equations. Amer. J. Math. 84, 134–160 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burgess G., Maharejin E.: A comparison of the boundary element and superposition methods. Comput. Struct. 19, 697–705 (1984)

    Article  MATH  Google Scholar 

  9. Fairweather G., Karageorghis A.: The method of fundamental solutions for elliptic boundary value problems. Numerical treatment of boundary integral equations. Adv. Comput. Math. 9(1–2), 69–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fairweather G., Karageorghis A., Martin P.A.: The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27, 759–769 (2003)

    Article  MATH  Google Scholar 

  11. Fenner R.T.: A force supersition approach to plane elastic stress and strain analysis. J. Strain Anal. 36, 517–529 (2001)

    Article  Google Scholar 

  12. Golberg, M.A., Chen, C.S.: The method of fundamental solutions for potential, Helmholtz and diffusion problems, Boundary integral methods: numerical and mathematical aspects. Comput. Eng., vol. 1, pp. 103–176. WIT Press/Comput. Mech. Publ., Boston (1999)

  13. Karageorghis A., Fairweather G.: The method of fundamental solutions for axisymmetric elasticity problems. Comput. Mech. 25, 524–532 (2000)

    Article  MATH  Google Scholar 

  14. Karageorghis A., Poullikkas A., Berger J.R.: Stress intensity factor computation using the method of fundamental solutions. Comput. Mech. 37, 445–454 (2006)

    Article  MATH  Google Scholar 

  15. Karageorghis A., Smyrlis Y.-S.: Matrix decomposition MFS algorithms for elasticity and thermo-elasticity problems in axisymmetric domains. J. Comput. Appl. Math. 206(2), 774–795 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Karageorghis A., Smyrlis Y.-S., Tsangaris T.: A matrix decomposition MFS algorithm for certain linear elasticity problems. Numer. Algorithms 43(2), 123–149 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Katsurada M.: A mathematical study of the charge simulation method. II, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 135–162 (1989)

    MATH  MathSciNet  Google Scholar 

  18. Kupradze V.D.: Potential methods in the theory of elasticity. Translated from the Russian by H. Gutfreund. Israel Program for Scientific Translations, Jerusalem (1965)

    MATH  Google Scholar 

  19. Kupradze V.D., Aleksidze M.A.: An approximate method of solving certain boundary–value problems (in Russian). Soobšč. Akad. Nauk Gruzin. SSR 30, 529–536 (1963)

    MATH  MathSciNet  Google Scholar 

  20. Kupradze V.D., Aleksidze M.A.: The method of functional equations for the approximate solution of certain boundary value problems. Comput. Methods Math. Phys. 4, 82–126 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kupradze, V.D., Gegelia, T.G., Basheleshvili, M.O., Burchuladze, T.V.: Трехмерные задачи матемтической теории упругости и термоупругости. (Russian) [Three-dimensional problems in the mathematical theory of elasticity and thermoelasticity]. Nauka, Moscow (1976)

  22. Maharejin E.: An extension of the superposition method for plane anisotropic elastic bodies. Comput. Struct. 21, 953–958 (1985)

    Article  Google Scholar 

  23. Marin L., Lesnic D.: The method of fundamental solutions for the Cauchy problem in two- dimensional linear elasticity. Int. J. Solids Struct. 41, 3425–3438 (2004)

    Article  MATH  Google Scholar 

  24. Mathon R., Johnston R.L.: The approximate solution of elliptic boundary–value problems by fundamental solutions. SIAM J. Numer. Anal. 14(4), 638–650 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Raamachandran J., Rajamohan C.: Analysis of composite using charge simulation method. Eng. Anal. Bound. Elem. 18, 131–135 (1996)

    Article  Google Scholar 

  26. Redekop D.: Fundamental solutions for the collocation method in planar elastostatics. Appl. Math. Model. 6, 390–393 (1982)

    Article  MATH  Google Scholar 

  27. Redekop D., Cheung R.S.W.: Fundamental solutions for the collocation method in three–dimensional elastostatics. Comput. Struct. 26, 703–707 (1987)

    Article  MATH  Google Scholar 

  28. Redekop D., Thompson J.C.: Use of fundamental solutions in the collocation method in axisymmetric elastostatics. Comput. Struct. 17, 485–490 (1983)

    Article  Google Scholar 

  29. Reichel L.: On the numerical solution of some two-dimensional electromagnetic interface problems by the boundary collocation method. Comput. Meth. Appl. Mech. Eng. 53, 1–11 (1985)

    Article  MATH  Google Scholar 

  30. Reichel, L.: Boundary collocation in Fejér points for computing eigenvalues and eigenfunctions of the Laplacian. In: Saff, E.B. (ed.) Approximation Theory, Tampa. Lecture Notes in Mathematics, vol. #1287, pp. 146–160. Springer, Berlin (1987)

  31. Rudin W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  32. Smyrlis Y.-S.: The method of fundamental solutions: a weighted least-squares approach. BIT 46(1), 163–194 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Smyrlis Y.-S.: Approximations by solutions of elliptic equations in semilocal spaces. J. Math. Anal. Appl. 350(1), 122–134 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Smyrlis, Y.-S.: Applicability and applications of the method of fundamental solutions. Math. Comp. (to appear)

  35. Smyrlis Y.-S., Karageorghis A.: A linear least–squares MFS for certain elliptic problems. Numer. Algorithms 35(1), 29–44 (2004)

    Article  MathSciNet  Google Scholar 

  36. Smyrlis, Y.-S., Karageorghis, A.: The under–determined version of the MFS: taking more sources than collocation points (submitted for publication)

  37. Tarkhanov, N.N.: The Cauchy problem for solutions of elliptic equations. Mathematical Topics, vol. 7. Akademie Verlag, Berlin (1995)

  38. Trefftz, E.: Ein Gegenstück zum Ritzschen Verfahren. pp. 131–137, 2er Intern. Kongr. für Techn. Mechanik, Zürich (1926)

  39. Verdera, J.: Removability, capacity and approximation. Complex potential theory (Montreal, PQ, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 439, pp. 419–473. Kluwer, Dordrecht (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiorgos-Sokratis Smyrlis.

Additional information

This work was supported by a grant of the University of Cyprus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smyrlis, YS. Mathematical foundation of the MFS for certain elliptic systems in linear elasticity. Numer. Math. 112, 319–340 (2009). https://doi.org/10.1007/s00211-008-0207-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0207-1

Mathematics Subject Classification (2000)