Skip to main content

Convergence and stability of a numerical method for micromagnetics

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The convergence and stability of a numerical method, which applies a nonconforming finite element method and an artificial boundary method to a multi-atomic Young measure relaxation model, for micromagnetics are analyzed. By revealing some key properties of the solution sets of both the continuous and discrete problems, we show that our numerical method is stable, and the solution set of the continuous problem is well approximated by those of the discrete problems. The performance of our method is also illustrated by some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold D.A., Falk R.S.: A uniformly accurate finite element method for Mindlin–Ressner Plate. SIAM J. Numer. Anal. 26, 1267–1290 (1989)

    Article  MathSciNet  Google Scholar 

  2. Brown W.F. Jr.: Micromagnetics. Interscience, New York (1963)

    Google Scholar 

  3. Carstensen C., Prohl A.: Numerical analysis of relaxed micromagnetics by penalised finite element. Numer. Math. 90, 65–99 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carstensen C., Praetorius P.: Numerical analysis for a macroscopic model in micromagnetics. SIAM J. Numer. Anal. 42, 2633–2651 (2004)

    Article  MathSciNet  Google Scholar 

  5. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  6. Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  7. DeSimone A.: Energy minimizers for large ferromagnetic bodies. Arch. Ration. Mech. Anal. 125, 99–143 (1993)

    Article  MathSciNet  Google Scholar 

  8. Funken S.A., Prohl A.: Stabilization methods in relaxed micromagnetism. M2AN Math. Model. Numer. Anal. 39, 995–1017 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Han H., Bao W.: Error estimates for the finite element approximation of problems in unbounded domains. SIAM J. Numer. Anal. 37, 1101–1119 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Han H., He C., Wu X.: Analysis of artificial boundary conditions for exterior boundary value problems in three dimensions. Numer. Math. 85, 367–386 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. James R.D., Kinderlehrer D.: Frustration in ferromagnetics. Cont. Mech. Thermodyn. 2, 215–239 (1990)

    Article  MathSciNet  Google Scholar 

  12. Kružík M., Prohl A.: Young measure approximation in micromagnetics. Numer. Math. 90, 291–307 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li Z.-P., Wu X.: Multi-atomic Young measure and artificial boundary in approximation of micromagnetics. Appl. Numer. Math. 51, 69–88 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pedregal P.: Parameterized Measures and Variational Principles. Birkhauser, Basel (1997)

    Google Scholar 

  15. Roubíček T.: Relaxation in Optimization Theory and Variational Calculus. de Gruyter, Berlin (1997)

    MATH  Google Scholar 

  16. Tartar L.: Beyond Young measures. Meccanica 30, 505–526 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xu, X., Li, Z.-P.: Non-conforming finite element and artificial boundary in multi-atomic Young measure approximation for micromagnetics, Research Report, No. 48. Institute of Mathematics and School of Mathematical Sciences, Peking University. Appl. Numer. Math. (2006, to appear)

  18. Xu, X., Li, Z.-P.: A posteriori error estimates of a non-conforming finite element method for problems with artificial boundary, Research Report, No.4. Institute of Mathematics and School of Mathematical Sciences, Peking University (2007)

  19. Chang K.C., Guo M.: Lectures on Functional Analysis (in Chinese), vol. 2. Peking University Press, Beijing (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Li.

Additional information

The research was supported in part by the Major State Basic Research Projects (2005CB321701), NSFC projects (10431050, 10571006, 10528102 and 10871011) and RFDP of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Xu, X. Convergence and stability of a numerical method for micromagnetics. Numer. Math. 112, 245–265 (2009). https://doi.org/10.1007/s00211-009-0210-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0210-1

Mathematics Subject Classification (2000)