Skip to main content
Log in

Crouzeix–Raviart boundary elements

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper establishes a foundation of non-conforming boundary elements. We present a discrete weak formulation of hypersingular integral operator equations that uses Crouzeix–Raviart elements for the approximation. The cases of closed and open polyhedral surfaces are dealt with. We prove that, for shape regular elements, this non-conforming boundary element method converges and that the usual convergence rates of conforming elements are achieved. Key ingredient of the analysis is a discrete Poincaré–Friedrichs inequality in fractional order Sobolev spaces. A numerical experiment confirms the predicted convergence of Crouzeix–Raviart boundary elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bespalov A., Heuer N.: The hp version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM Math. Model. Numer. Anal. 42, 821–849 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brenner S.: Poincaré–Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buffa A., Ciarlet P. Jr.: On traces for functional spaces related to Maxwell’s equations I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24, 9–30 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buffa A., Costabel M., Sheen D.: On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Crouzeix M., Raviart P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Inf. Recherche Opérationnelle Sér. Rouge 7, 33–75 (1973)

    MathSciNet  Google Scholar 

  6. Ervin V.J., Heuer N., Stephan E.P.: On the hp version of the boundary element method for Symm’s integral equation on polygons. Comput. Methods Appl. Mech. Eng. 110, 25–38 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gatica, G., Healey, M., Heuer, N.: The boundary element method with Lagrangian multipliers. Numer. Methods Partial Diff. Eq. (2008, in press). doi:10.1002/num.20401

  8. Heuer N.: Additive Schwarz method for the p version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88, 485–511 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hsiao G.C., Wendland W.L.: A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449–481 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lions J.-L., Magenes E.: Non-Homogeneous Boundary Value Problems and Applications I. Springer, New York (1972)

    MATH  Google Scholar 

  11. McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, London (2000)

    MATH  Google Scholar 

  12. Nédélec J.-C., Planchard J.: Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans R 3. RAIRO 7(R-3), 105–129 (1973)

    Google Scholar 

  13. Stephan E.P.: A boundary integral equation method for three-dimensional crack problems in elasticity. Math. Methods Appl. Sci. 8, 609–623 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Heuer.

Additional information

Norbert Heuer is supported by Fondecyt-Chile under grant no. 1080044. F.-J. Sayas is partially supported by MEC-FEDER Project MTM2007-63204 and Gobierno de Aragón (Grupo Consolidado PDIE).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuer, N., Sayas, FJ. Crouzeix–Raviart boundary elements. Numer. Math. 112, 381–401 (2009). https://doi.org/10.1007/s00211-009-0212-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0212-z

Mathematics Subject Classification (2000)

Navigation