Skip to main content

Sparse recovery by the standard Tikhonov method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

It is a common belief that the Tikhonov scheme with the \({\|\cdot\|_{L_2}}\)-penalty fails to reconstruct a sparse structure with respect to a given system {ϕ i }. However, in this paper we present a procedure for the sparse recovery, which is totally based on the standard Tikhonov method. This procedure consists of two steps. At first the Tikhonov scheme is used as a sieve to find the coefficients near ϕ i , which are suspected to be non-zero. Within this step the performance of the standard Tikhonov method is controlled in some sparsity promoting space rather than in the original Hilbert one. In the second step of the proposed procedure, the coefficients with indices selected in the previous step are estimated by means of the data functional strategy. The choice of the regularization parameter is a crucial issue for both steps. We show that a recently developed parameter choice rule called the balancing principle can be effectively used here. We also present the results of computational experiments giving the evidence of the reliability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderssen, R.: The linear functional strategy for improperly posed problems. Inverse problems (Oberwolfach, 1986). Int. Schriftenreihe Numer. Math. 77, 11–30 (1986)

    Google Scholar 

  2. Bauer F., Mathé P., Pereverzev S.V.: Local solutions to inverse problems in geodesy: The impact of the noise covariance structure upon the accuracy of estimation. J. Geodesy 81, 39–51 (2007)

    Article  MATH  Google Scholar 

  3. Bonesky T., Bredies K., Lorenz D.A., Maass P.: A generalized conditional gradient method for nonlinear operator equation with sparsity constraints. Inverse Probl. 23, 2041–2058 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Böttcher A., Hofmann B., Tautenhahn U., Yamamoto M.: Convergence rates for Tikhonov regularization from different kinds of smoothness conditions. Appl. Anal. 85, 555–578 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burger M., Osher S.: Convergence rates of convex variational regularization. Inverse Probl. 20, 1411–1421 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Daubechies I., Defrise M., De Mol C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Donoho D.: Statistical estimation and optimal recovery. Ann. Stat. 22, 238–270 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Donoho D.: Compressed sensing. IEEE Trans. Inform. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  9. Engl H.W., Hanke M., Neubauer A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  10. Goldenshluger A., Pereverzev S.V.: Adaptive estimation of linear functions in Hilbert scales from indirect white noise observation. Probab. Theory Relat. Field 118, 169–186 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hansen P.C.: Regularization tools, a MATLAB package for analysis of discrete regularization problems. Numer. Algorithm 6, 1–35 (1994)

    Article  MATH  Google Scholar 

  12. Hofmann B., Kaltenbacher B., Pöschl C, Scherzer O.: A convergence rates results in Banach spaces with non-smooth operators. Inverse Probl. 23, 987–1010 (2007)

    Article  MATH  Google Scholar 

  13. Lu J., Engl H.W., Machne R., Schuster P.: Inverse bifurcation analysis of a model for mammalian G 1/S regulatory module. Lecture Notes in Bioinformatics 4414, 168–184 (2007)

    Google Scholar 

  14. Malioutov, D.M.: A sparse signal reconstruction perspective for source localization with sensor arrays. Massachusetts Institute of Technology, Dissertation (2003)

  15. Mathé P., Pereverzev S.V.: Optimal discretization of inverse problems in Hilbert scales. Regularization and self-regularization of projection methods. SIAM J. Numer. Anal. 38, 1999–2021 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mathé P., Pereverzev S.V.: Direct estimation of linear functionals from indirect noisy observations. J Complex. 18, 500–516 (2002)

    Article  MATH  Google Scholar 

  17. Mathé P., Pereverzev S.V.: Geometry of linear ill-posed problems in variable Hilbert scales. Inverse Probl. 19, 789–803 (2003)

    Article  MATH  Google Scholar 

  18. Mathé P., Pereverzev S.V.: Regularization of some linear ill-posed problems with discretized random noisy data. Math. Comput. 75, 1913–1929 (2006)

    Article  MATH  Google Scholar 

  19. Neubauer A.: An a posteriori parameter choice for Tikhonov regularization in Hilbert scales leading to optimal convergence rates. SIAM J. Numer. Anal. 25, 1313–1326 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Neubauer A.: Estimation of discontinuous solutions of ill-posed problems via adaptive grid regularization. J. Inv. Ill posed Probl. 14, 705–716 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ramlau R., Teschke G.: A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints. Numer. Math. 104, 177–203 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, S., Pereverzev, S.V. Sparse recovery by the standard Tikhonov method. Numer. Math. 112, 403–424 (2009). https://doi.org/10.1007/s00211-009-0214-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0214-x

Mathematics Subject Classification (2000)