Skip to main content

Quadrature formulae with multiple nodes and a maximal trigonometric degree of exactness

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we consider interpolatory quadrature formulae with multiple nodes, which have the maximal trigonometric degree of exactness. Our approach is based on a procedure given by Ghizzeti and Ossicini (Quadrature formulae, Academie-Verlag, Berlin, 1970). We introduce and consider the so-called σ-orthogonal trigonometric polynomials of semi-integer degree and give a numerical method for their construction. Also, some numerical examples are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bojanov, B.D.: Oscillating polynomials of least L 1-norm. In: Hämmerlin, G. (ed.) Numerical Integration, ISNM 57, pp. 25–33. Birkhäuser, Basel (1982)

  2. Cvetković A.S., Milovanović G.V.: The Mathematica Package “OrthogonalPolynomials”. Facta Univ. Ser. Math. Inform. 19, 17–36 (2004)

    MATH  Google Scholar 

  3. Dryanov D.P.: Quadrature formulae with free nodes for periodic functions. Numer. Math. 67, 441–464 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Du J., Han H., Jin G.: On trigonometric and paratrigonometric Hermite interpolation. J. Approx. Theory 131, 74–99 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Engels H.: Numerical Quadrature and Cubature. Academic Press, London (1980)

    MATH  Google Scholar 

  6. Gautschi W., Milovanović G.V.: S-orthogonality and construction of Gauss-Turán type quadrature formulae. J. Comput. Appl. Math. 86, 205–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ghizzeti A., Ossicini A.: Quadrature Formulae. Academie-Verlag, Berlin (1970)

    Google Scholar 

  8. Milovanović G.V., Cvetković A.S., Stanić M.P.: Trigonometric orthogonal systems and quadrature formulae. Comput. Math. Appl. 56(11), 2915–2931 (2008)

    Article  MathSciNet  Google Scholar 

  9. Milovanović G.V., Cvetković A.S., Stanić M.P.: Explicit formulas for five-term recurrence coefficients of orthogonal trigonometric polynomials of semi-integer degree. Appl. Math. Comput. 198(2), 559–573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Milovanović, G.V., Cvetković, A.S., Stanić, M.P.: Trigonometric orthogonal systems and quadrature formulae with maximal trigonometric degree of exactness. In: Boyanov, T. et al. (eds.) Numerical Methods and Applications. 6th International Conference, NMA 2006, Borovets, Bulgaria, August 20–24, 2006. Revised papers. Lecture Notes in Computer Science, vol. 4310, pp. 402–409, Springer, Berlin (2007)

  11. Milovanović, G.V., Spalević, M.M.: Construction of Chakalov-Popoviciu’s type quadrature formulae. Rend. Circ. Mat. Palermo Ser. II, Suppl. 52, 625–636 (1998)

    Google Scholar 

  12. Milovanović G.V., Spalević M.M., Cvetković A.S.: Calculation of Gaussian type quadratures with multiple nodes. Math. Comput. Modell. 39, 325–347 (2004)

    Article  MATH  Google Scholar 

  13. Mirković, B.: Theory of Measures and Integrals. Naučna knjiga, Beograd (1990) (in Serbian)

  14. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. In: Classics in Applied Mathematics, vol. 30. SIAM, Philadelphia (2000). Reprint of the 1970 original

  15. Shi Y.G.: A kind of extremal problem of integration on an arbitrary measure. Acta Sci. Math. (Szeged) 65, 567–575 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Shi Y.G., Xu G.: Construction of σ-orthogonal polynomials and Gaussian quadrature formulas. Adv. Comput. Math. 27(1), 79–94 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Turetzkii, A.H.: On quadrature formulae that are exact for trigonometric polynomials. East J. Approx. 11, 337–359 (2005) (translation in English from Uchenye Zapiski, Vypusk 1(149), Seria math. Theory of Functions, Collection of papers, Izdatel’stvo Belgosuniversiteta imeni V.I. Lenina, Minsk, pp. 31–54 (1959))

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gradimir V. Milovanović.

Additional information

The authors were supported in part by the Serbian Ministry of Science and Technological Development (Project: Orthogonal Systems and Applications, grant number #144004) and the Swiss National Science Foundation (SCOPES Joint Research Project No. IB7320-111079 “New Methods for Quadrature”).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milovanović, G.V., Cvetković, A.S. & Stanić, M.P. Quadrature formulae with multiple nodes and a maximal trigonometric degree of exactness. Numer. Math. 112, 425–448 (2009). https://doi.org/10.1007/s00211-009-0219-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0219-5

Mathematics Subject Classification (2000)