Skip to main content
Log in

Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we address several theoretical questions related to the numerical approximation of the scattering of acoustic waves in two or three dimensions by penetrable non-homogeneous obstacles using convolution quadrature (CQ) techniques for the time variable and coupled boundary element method/finite element method for the space variable. The applicability of CQ to waves requires polynomial type bounds for operators related to the operator Δ − s 2 in the right half complex plane. We propose a new systematic way of dealing with this problem, both at the continuous and semidiscrete-in-space cases. We apply the technique to three different situations: scattering by a group of sound-soft and -hard obstacles, by homogeneous and non-homogeneous obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachelot A., Bounhoure L., Pujols A.: Couplage éléments finis-potentiels retardés pour la diffraction électromagnétique par un obstacle hétérogène. Numer. Math. 89(2), 257–306 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bamberger A., Duong T.H.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I. Math. Methods Appl. Sci. 8(3), 405–435 (1986)

    MATH  MathSciNet  Google Scholar 

  3. Bamberger A., Duong T.H.: Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Methods Appl. Sci. 8(4), 598–608 (1986)

    MATH  MathSciNet  Google Scholar 

  4. Becache E., Ha-Duong T.: A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem. RAIRO Modél. Math. Anal. Numér. 28(2), 141–176 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Calvo M.P., Cuesta E., Palencia C.: Runge-Kutta convolution quadrature methods for well-posed equations with memory. Numer. Math. 107(4), 589–614 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carstensen C., Funken S.A.: Coupling of nonconforming finite elements and boundary elements. I. A priori estimates. Computing 62(3), 229–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chapko R., Kress R.: Rothe’s method for the heat equation and boundary integral equations. J. Integr. Equ. Appl. 9(1), 47–69 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Boundary Elements IX, vol. 1 (Stuttgart, 1987), pp. 411–420. Comput. Mech., Southampton (1987)

  9. Costabel M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Costabel M.: Time-dependent problems with the boundary integral equation method. In: Stein, E., Borst, R., Hughes, T.(eds) Encyclopedia of Computational Mechanics, chap. 22, Wiley, New York (2003)

    Google Scholar 

  11. Costabel M., Stephan E.: A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106(2), 367–413 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cuesta E., Lubich C., Palencia C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology, vol. 5. Springer, Berlin (1992). Evolution problems. I. With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon

  14. Davies P.J., Duncan D.B.: Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 42(3), 1167–1188 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ha-Duong, T.: On retarded potential boundary integral equations and their discretisation. In: Topics in Computational Wave Propagation. Lect. Notes Comput. Sci. Eng., vol. 31, pp. 301–336. Springer, Berlin (2003)

  16. Ha-Duong T., Ludwig B., Terrasse I.: A Galerkin BEM for transient acoustic scattering by an absorbing obstacle. Int. J. Numer. Methods Eng. 57(13), 1845–1882 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hackbusch, W., Kress, W., Sauter, S.A.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation by cutoff and panel-clustering. In: Boundary Element Analysis. Lect. Notes Appl. Comput. Mech., vol. 29, pp. 113–134. Springer, Berlin (2007)

  18. Hairer, E., Wanner, G.: Solving ordinary differential equations II. Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996)

  19. Han H.D.: A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8(3), 223–232 (1990)

    MATH  MathSciNet  Google Scholar 

  20. Hohage T., Sayas F.-J.: Numerical solution of a heat diffusion problem by boundary element methods using the Laplace transform. Numer. Math. 102(1), 67–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kress W., Sauter S.: Numerical treatment of retarded boundary integral equations by sparse panel clustering. IMA J. Numer. Anal. 28, 162–185 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Laliena, A.R., Rapún, M.-L., Sayas, F.-J.: Symmetric boundary integral formulations for Helmholtz transmission problems. Appl. Numer. Math. (2009, in press)

  23. Laliena, A.R., Sayas, F.-J.: Algorithmic aspects of RK-based convolution quadrature with an application to the scattering of waves (in preparation)

  24. Laliena, A.R., Sayas, F.-J.: A distributional version of Kirchhoff’s formula. J. Math. Anal. Appl. (in revision)

  25. Lubich C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lubich C.: Convolution quadrature and discretized operational calculus. II. Numer. Math. 52(4), 413–425 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lubich C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67(3), 365–389 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lubich C.: Convolution quadrature revisited. BIT 44(3), 503–514 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lubich C., Ostermann A.: Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comput. 60(201), 105–131 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lubich C., Schneider R.: Time discretization of parabolic boundary integral equations. Numer. Math. 63(4), 455–481 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Martensen E.: The Rothe method for the wave equation in several space dimensions. Proc. R. Soc. Edinb. Sect. A 84(1–2), 1–18 (1979)

    MATH  MathSciNet  Google Scholar 

  32. McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Monk P., Wang X., Wildman R., Weile D.: A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics. IEEE Trans. Antennas Propag. 56(8), 2442–2452 (2008)

    Article  MathSciNet  Google Scholar 

  34. Sayas, F.-J.: Direct boundary element methods with discretization of all integral operators. In: Integral Methods in Science and Engineering: Techniques and Applications, pp. 217–226. Birkhäuser Boston, Boston (2007)

  35. Schädle A., López-Fernández M., Lubich C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schanz M.: Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach. Lecture Notes in Applied and Computational Mechanics. Springer, New York (2001)

    Google Scholar 

  37. Schwartz L.: Méthodes mathématiques pour les sciences physiques. Enseignement des Sciences.. Hermann, Paris (1961)

    Google Scholar 

  38. Sheen D., Sloan I.H., Thomée V.: A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal. 23(2), 269–299 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  39. Steinbach O.: Fast solution techniques for the symmetric boundary element method in linear elasticity. Comput. Methods Appl. Mech. Eng. 157(3–4), 185–191 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco-Javier Sayas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laliena, A.R., Sayas, FJ. Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112, 637–678 (2009). https://doi.org/10.1007/s00211-009-0220-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0220-z

Mathematics Subject Classification (2000)

Navigation