Abstract
A unified a posteriori error analysis is derived in extension of Carstensen (Numer Math 100:617–637, 2005) and Carstensen and Hu (J Numer Math 107(3):473–502, 2007) for a wide range of discontinuous Galerkin (dG) finite element methods (FEM), applied to the Laplace, Stokes, and Lamé equations. Two abstract assumptions (A1) and (A2) guarantee the reliability of explicit residual-based computable error estimators. The edge jumps are recast via lifting operators to make arguments already established for nonconforming finite element methods available. The resulting reliable error estimate is applied to 16 representative dG FEMs from the literature. The estimate recovers known results as well as provides new bounds to a number of schemes.
Similar content being viewed by others
References
Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)
Ainsworth M.: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45, 1777–1798 (2007)
Braess D., Carstensen C., Reddy B.D.: Uniform convergence and a posteriori error estimators for the enhanced strain finite element method. Numer. Math. 96, 461–479 (2004)
Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)
Bustinza R., Gatica G.N., Cockburn B.: An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems. J. Sci. Comput. 22–23, 147–185 (2005)
Becker R., Hansbo P., Larson M.G.: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 192, 723–733 (2003)
Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous finite elements for diffusion problems. In Atti Convegno in onore di F. Brioschi (Milan, 1991), Istituto Lambardo, Accademia di Scienze e Lettere, Milan, Italy (1991), pp. 197–217
Brezzi F., Manzini G., Marini D., Pietra P., Russo A.: Discontinuous finite elements for elliptic problems. Numer. Methods Partial Differ. Equ. 16, 365–378 (2000)
Baumann C.E., Oden J.T.: A discontinuous hp finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)
Bassi F., Rebay S.: A higher order accurate discontinuous Galerkin finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)
Braess D.: Finite Elements. Cambridge University Press, Cambridge (1997)
Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A higher-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dilbelius, G. (eds.) Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen, Belgium (1997)
Babuska I., Zlamal M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973)
Carstensen, C.L.: Numerical analysis of the primal problem of elastoplasticity with hardening. Numer. Math 82(4), 577–597 (1999) MR 2000d:74070
Carstensen C.L.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)
Carstensen C., Dolzmann G.: A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81, 187–209 (1998)
Carstensen, C., Funken, S.A.: Constants in Clément-interpolation error and residual-based a posteriori error estimates in finite element methods. East-West J. Numer. Math. 8(3):153–175 (2000) MR 2002a:65173
Cockburn B., Schötzau D., Kanschat G., Schwab C.: Local discontinuous Galerkin methods for the Stokes systems. SIAM J. Numer. Anal. 40, 319–343 (2002)
Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite element methods. J. Numer. Math. 107(3), 473–502 (2007)
Carstensen C., Jensen M.: Averaging techniques for reliable and efficient a posteriori finite element error control: analysis and applications. Contemp. Math. 383, 15–34 (2006)
Cockburn B., Kanschat G., Schötzau D., Schwab C.: Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Eng. 195, 3184–3204 (2006)
Clément P.: Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. 2, 77–84 (1975)
Cockburn B., Shu C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Douglas, J. Jr., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. Lecture Notes in Physics, vol. 58, pp. 207–216. Springer, Berlin (1976)
Hansbo P., Larson M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002)
Houston P., Schötzau D., Wihler T.P.: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem. J. Sci. Comput. 22–23, 347–370 (2005)
Houston P., Schötzau D., Wihler T.P.: An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity. Comput. Methods Appl. Mech. Eng. 195, 3224–3246 (2006)
Karakashian O.A., Pascal F.: A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)
Melenk J.M., Wohlmuth B.: On residual-based aposteriori error estimation in hp-FEM. Adv. Comput. Math. 15, 311–331 (2001)
Riviere B., Wheeler M.F., Girault V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I. Comput. Geosci. 3, 337–360 (1999)
Schötzau D., Schwab C., Toselli A.: Mixed hp-dGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003)
Toselli A.: hp-Discontinuous Galerkin approximations for Stokes problems. Math. Models Methods Appl. Sci. 12, 1565–1616 (2002)
Wihler T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75, 1087–1102 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
C. Carstensen and M. Jensen supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin and the Hausdorff Institute of Mathematics in Bonn, Germany.
C. Carstensen, T. Gudi, and M. Jensen supported by DST-DAAD (PPP-05) project no. 32307481.
Rights and permissions
About this article
Cite this article
Carstensen, C., Gudi, T. & Jensen, M. A unifying theory of a posteriori error control for discontinuous Galerkin FEM. Numer. Math. 112, 363–379 (2009). https://doi.org/10.1007/s00211-009-0223-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-009-0223-9