Skip to main content

Advertisement

Allometry constants of finite-dimensional spaces: theory and computations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We describe the computations of some intrinsic constants associated to an n-dimensional normed space \({\mathcal{V}}\), namely the N-th “allometry” constants

$$\kappa_\infty^N(\mathcal{V}) := \inf \{\|T\| \cdot \|T'\|, \quad T\,:\,\ell_\infty^N \to \mathcal{V}, \; \; T': \mathcal{V} \to \ell_\infty^N, \; \;TT'={\rm Id}_{\mathcal{V}}\}.$$

These are related to Banach–Mazur distances and to several types of projection constants. We also present the results of our computations for some low-dimensional spaces such as sequence spaces, polynomial spaces, and polygonal spaces. An eye is kept on the optimal operators T and T′, or equivalently, in the case Nn, on the best conditioned bases. In particular, we uncover that the best conditioned bases of quadratic polynomials are not symmetric, and that the Lagrange bases at equidistant nodes are best conditioned in the spaces of trigonometric polynomials of degree at most one and two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asplund E.: Comparison between plane symmetric convex bodies and parallelograms. Math. Scand. 8, 171–180 (1960)

    MATH  MathSciNet  Google Scholar 

  2. Chalmers, B.L.: n-dimensional spaces with maximal projection constant. In: 12th Int. Conf. on Approximation Theory (2007)

  3. Chalmers B.L., Metcalf F.T.: Minimal generalized interpolation projections. JAT 20, 302–313 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheney E.W., Price K.H.: Minimal projections. In: Talbot, A. (eds) Approximation Theory., pp. 261–289. Academic Press, London (1970)

    Google Scholar 

  5. Cheney E.W., Hobby C.R., Morris P.D., Schurer F., Wulbert D.E.: On the minimal property of the Fourier projection. Trans. Am. Math. Soc. 143, 249–258 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Boor C., Pinkus A.: Proof of the conjectures of Bernstein and Erdős concerning the optimal nodes for polynomial interpolation. JAT 24, 289–303 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Foucart S.: On the best conditioned bases of quadratic polynomials. JAT 130, 46–56 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Foucart, S.: Some comments on the comparison between condition numbers and projection constants. In: Neamtu, M., Schumaker, L.L. (eds.) Approximation Theory XII: San Antonio 2007, pp. 143–156. Nashboro Press (2008)

  9. König H., Tomczak-Jaegermann N.: Norms of minimal projections. J. Funct. Anal. 119, 253–280 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Konheim A.G., Rivlin T.J.: Extreme points of the unit ball in a space of real polynomials. Am. Math. Mon. 73, 505–507 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. Morris P.D., Price K.H., Cheney E.W.: On an approximation operator of de la Vallée Poussin. JAT 13, 375–391 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  12. Morris P.D., Cheney E.W.: On the existence and characterization of minimal projections. J. Reine Angew. Math. 270, 61–76 (1974)

    MATH  MathSciNet  Google Scholar 

  13. Pan K.C., Shekhtman B.: On minimal interpolating projections and trace duality. JAT 65, 216–230 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rivlin T.J.: Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory. Wiley, New York (1990)

    MATH  Google Scholar 

  15. Szarek S.J.: Spaces with large distance to \({l\sp n\sb \infty}\) and random matrices. Am. J. Math. 112, 899–942 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Vale, R., Waldron, S.: The vertices of the platonic solids are tight frames. In: Advances in Constructive Approximation: Vanderbilt 2003, pp. 495–498. Nashboro Press, Brentwood (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Foucart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foucart, S. Allometry constants of finite-dimensional spaces: theory and computations. Numer. Math. 112, 535–564 (2009). https://doi.org/10.1007/s00211-009-0225-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0225-7

Keywords