Skip to main content
Log in

Wave atoms and time upscaling of wave equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a new geometric strategy for the numerical solution of hyperbolic wave equations in smoothly varying, two-dimensional time-independent periodic media. The method consists in representing the time-dependent Green’s function in wave atoms, a tight frame of multiscale, directional wave packets obeying a precise parabolic balance between oscillations and support size, namely wavelength ~(diameter).2 Wave atoms offer a uniquely structured representation of the Green’s function in the sense that

  • the resulting matrix is universally sparse over the class of C coefficients, even for “large” times;

  • the matrix has a natural low-rank block-structure after separation of the spatial indices.

The parabolic scaling is essential for these properties to hold. As a result, it becomes realistic to accurately build the full matrix exponential in the wave atom frame, using repeated squaring up to some time typically of the form \({\Delta t \sim \sqrt{\Delta x}}\) , which is bigger than the standard CFL timestep. Once the “expensive” precomputation of the Green’s function has been carried out, it can be used to perform unusually large, upscaled, “cheap” time steps. The algorithm is relatively simple in that it does not require an underlying geometric optics solver. We prove accuracy and complexity results based on a priori estimates of sparsity and separation ranks. On a N-by-N grid, the “expensive” precomputation takes somewhere between O(N 3log N) and O(N 4log N) steps depending on the separability of the acoustic medium. The complexity of upscaled timestepping, however, beats the O(N 3log N) bottleneck of pseudospectral methods on an N-by-N grid, for a wide range of physically relevant situations. In particular, we show that a naive version of the wave atom algorithm provably runs in O(N 2+δ) operations for arbitrarily small δ—but for the final algorithm we had to slightly increase the exponent in order to reduce the large constant. As a result, we get estimates between O(N 2.5 log N) and O(N 3 log N) for upscaled timestepping. We also show several numerical examples. In practice, the current wave atom solver becomes competitive over a pseudospectral method in regimes where the wave equation should be solved hundreds of times with different initial conditions, as in reflection seismology. In academic examples of accurate propagation of bandlimited wavefronts, if the precomputation step is factored out, then the wave atom solver is indeed faster than a pseudospectral method by a factor of about 3–5 at N = 512, and a factor 10–20 at N = 1024, for the same accuracy. Very similar gains are obtained in comparison versus a finite difference method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko Yu.V.: Pointwise inequalities of Landau-Kolmogorov-type for functions defined on a finite segment. Ukr. Math. J. 53(2), 270–275 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bacry E., Mallat S., Papanicolaou G.: A wavelet based space-time adaptive numerical method for partial differential equations. Math. Model. Num. Anal. 26(7), 793 (1992)

    MATH  MathSciNet  Google Scholar 

  3. Beylkin G., Coifman R.R., Rokhlin V.: Fast wavelet transforms and numerical algorithms. Comm. Pure Appl. Math. 44, 141–183 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beylkin G., Mohlenkamp M.J.: Algorithms for numerical analysis in high dimensions. SIAM J. Sci. Comput. 26(6), 2133–2159 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beylkin G., Sandberg K.: Wave propagation using bases for bandlimited functions. Wave Motion 41(3), 263–291 (2005)

    Article  MathSciNet  Google Scholar 

  6. Candès E.J.: Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal. 6, 197–218 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Candès E.J., Demanet L.: Curvelets and Fourier integral operators. C. R. Acad. Sci. Paris Ser. I 336, 395–398 (2003)

    MATH  Google Scholar 

  8. Candès E.J., Demanet L.: The curvelet representation of wave propagators is optimally sparse. Comm. Pure Appl. Math. 58(11), 1472–1528 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Candès, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. SIAM Mult. Model. Sim. (2005, submitted)

  10. Candès, E.J., Donoho, D.L.: Curvelets—a surprisingly effective nonadaptive representation for objects with edges. In: Rabut, C., Cohen, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp.105–120. Vanderbilt University Press, Nashville (2000)

  11. Candès E.J., Donoho D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Comm. Pure Appl. Math. 57, 219–266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen A.: Numerical Analysis of Wavelet Methods. North-Holland/Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  13. Cohen A., Dahmen W., DeVore R.: Adaptive wavelet methods for elliptic operator equations— Convergence rates. Math. Comp. 70(233), 27–75 (2000)

    Article  MathSciNet  Google Scholar 

  14. Córdoba A., Fefferman C.: Wave packets and Fourier integral operators. Comm. PDE 3(11), 979–1005 (1978)

    Article  MATH  Google Scholar 

  15. Demanet, L.: Curvelets, wave atoms, and wave equations. Ph.D. Thesis, California Institute of Technology, May (2006)

  16. Demanet, L., Ying, L.: Wave atoms and sparsity of oscillatory patterns (2006, submitted)

  17. Douma, H., de Hoop, M.V.: Wave-character preserving prestack map migration using curvelets. Presentation at the Society of Exploration Geophysicists, Denver, CO (2004)

  18. Duistermaat J.: Fourier Integral Operators. Birkhauser, Boston (1996)

    MATH  Google Scholar 

  19. Engquist B., Osher S., Zhong S.: Fast wavelet based algorithms for linear evolution equations. SIAM J. Sci. Comput. 15(4), 755–775 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fefferman C.: A note on spherical summation multipliers. Israel J. Math. 15, 44–52 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  21. Flesia, A.G., Hel-Or, H., Averbuch, A., Candès, E.J., Coifman, R.R., Donoho, D.L.: Digital implementation of ridgelet packets. In: Stoeckler, J., Welland, G.V. (eds.) Beyond Wavelets. Academic Press, London (2003)

  22. Hackbusch W.: A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices. Computing 62, 89–108 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hennenfent, G., Herrmann, F.J.: Seismic denoising with unstructured curvelets. Comput. Sci. Eng. (2006, to appear)

  24. Herrmann, F.J., Moghaddam, P.P., Stolk, C.C.: Sparsity- and continuity-promoting seismic image recovery with curvelet frames. (2006, submitted)

  25. Hoop M.V., Rousseau J.H., Wu R.: Generlization of the phase-screen approximation for the scattering of acoustic waves. Wave Motion 31(1), 43–70 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hörmander L.: The Analysis of Linear Partial Differential Operators, vol.4. Springer, Heidelberg (1985)

    Google Scholar 

  27. Jaffard S.: Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal. 29(4), 965–986 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lax P.: Asymptotic solutions of oscillatory initial value problems. Duke Math J. 24, 627–646 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  29. LeVeque R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, London (2002)

    MATH  Google Scholar 

  30. Meyer Y.: Ondelettes et Opérateurs. Hermann, Paris (1990)

    Google Scholar 

  31. Meyer Y., Coifman R.R.: Wavelets, Calderón-Zygmund and Multilinear Operators. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  32. Moler C., Van Loan C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Seeger A., Sogge C., Stein E.: Regularity properties of Fourier integral operators. Ann. Math. 134, 231–251 (1991)

    Article  MathSciNet  Google Scholar 

  34. Smith H.: A Hardy space for Fourier integral operators. J. Geom. Anal. 8, 629–653 (1998)

    MATH  MathSciNet  Google Scholar 

  35. Smith H.: A parametrix construction for wave equations with C 1,1 coefficients. Ann. Inst. Fourier (Grenoble) 48, 797–835 (1998)

    MATH  MathSciNet  Google Scholar 

  36. Stein E.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  37. Ying, L., Candès, E.J.: The phase-flow method. J. Comput. Phys. (2006, to appear)

  38. Ziemer W.: Weakly Differentiable Functions. Springer, Heidelberg (1989)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Demanet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demanet, L., Ying, L. Wave atoms and time upscaling of wave equations. Numer. Math. 113, 1–71 (2009). https://doi.org/10.1007/s00211-009-0226-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0226-6

Mathematical Subject Classification (2000)

Navigation