Skip to main content
Log in

Numerical approximation of characteristic values of partial retarded functional differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The stability of an equilibrium point of a dynamical system is determined by the position in the complex plane of the so-called characteristic values of the linearization around the equilibrium. This paper presents an approach for the computation of characteristic values of partial differential equations of evolution involving time delay, which is based on a pseudospectral method coupled with a spectral method. The convergence of the computed characteristic values is of infinite order with respect to the pseudospectral discretization and of finite order with respect to the spectral one. However, for one dimensional reaction diffusion equations, the finite order of the spectral discretization is proved to be so high that the convergence turns out to be as fast as one of infinite order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breda D.: Solution operator approximation for characteristic roots of delay differential equations. Appl. Numer. Math. 56, 305–317 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Breda, D.: The infinitesimal generator approach for the computation of characteristic roots for delay differential equations using BDF methods. Research Report RR02/17UDMI. Department of Mathematics and Computer Science, University of Udine (2002)

  3. Breda D., Maset S., Vermiglio R.: Computing the characteristic roots for delay differential equations . IMA J. Numer. Anal 24(1), 1–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Breda D., Maset S., Vermiglio R.: Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput 27(2), 482–495 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Breda, D., Maset, S., Vermiglio, R.: A new algorithm for efficient computation of level curves of surfaces. Research Report RR05/09UDMI, Department of Mathematics and Computer Science, University of Udine (2005)

  6. Breda D., Maset S., Vermiglio R.: Pseudospectral approximation of derivative operators with non-local boundary conditions. Appl. Numer. Math 56, 318–331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chan W.L., Zhu G.B.: On the semigroups of age-size dependent population dynamics with spatial diffusion. Manuscr. Math. 66, 161–181 (1989)

    Article  MATH  Google Scholar 

  8. Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O.: Delay Equations Functional-, Complex-, and Nonlinear Analysis. AMS Series No. 110. Springer, Berlin (1995)

  9. Engelborghs K., Luzyanina T., Roose D.: Computing stability of differential equations with bounded distributed delays. Numer. Algorithms 34(1), 41–66 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Engelborghs K., Roose D.: On stability of LMS methods and characteristic roots of delay differential equations. SIAM J. Numer. Anal. 40(2), 629–650 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Engelborghs K., Roose D.: Numerical computation of stability and detection of Hopf bifurcations of steady-state solutions of delay differential equations. Adv. Comput. Math. 10(3-4), 271–289 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators. Operator Theory: Advances and Applications, vol. 49. Birkhauser, Basel (1990)

  13. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff problems. Second revised edition. SCM Series No. 8. Springer, Berlin (1993)

  14. Hutchinson G.E.: Circular causal systems in ecology. Ann. N. Y. Acad. Sci. 50, 221–246 (1948)

    Article  Google Scholar 

  15. Kuang Y.: Delay Differential Equations with Application in Population Dynamics. Academic Press, New York (1993)

    Google Scholar 

  16. Ledoux V., Van Daele M., Vanden Berghe G.: MATSLISE: a MATLAB package for the numerical solution of Sturm–Liouville and Schrödinger equations. ACM Trans. Math. Softw. 31(4), 532–554 (2005)

    Article  MATH  Google Scholar 

  17. Lutgen J.: A note on Riesz bases of eigenvectors of certain holomorphic operator-functions. J. Math. Anal. Appl. 255, 358–373 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pryce, J.D.: The Numerical Solution of Sturm–Liouville Problems. Numerical Mathematics and Scientific Computations Series. Oxford University Press, Oxford (1994)

  19. Pruess S.: Estimating the eigenvalues of Sturm–Liouville problems by approximating the differential equations. SIAM J. Numer. Anal. 10(1), 55–68 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rudin, W.: Functional Analysis. Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)

  21. So J.H.-W., Yu. J.: Global attractivity for a population model with delay. Proc. Am. Math. Soc. 125, 2687–2694 (1995)

    Article  MathSciNet  Google Scholar 

  22. Trefethen, L.N.: Spectral methods in MATLAB. Software Environment Tools series, SIAM (2000)

  23. Wu, J.: Theory and Applications of Partial Functional Differential Equations. AMS Series No. 119. Springer, Berlin (1996)

  24. Zou X.: Delay induced traveling wave fronts in reaction diffusion equations of KPP-Fisher type. J. Comput. Appl. Math. 146, 309–321 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breda, D., Maset, S. & Vermiglio, R. Numerical approximation of characteristic values of partial retarded functional differential equations. Numer. Math. 113, 181–242 (2009). https://doi.org/10.1007/s00211-009-0233-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0233-7

Mathematics Subject Classification (2000)

Navigation