Abstract
In this paper, we develop an a posteriori error analysis of a mixed finite element method for a fluid–solid interaction problem posed in the plane. The media are governed by the acoustic and elastodynamic equations in time-harmonic regime, respectively, and the transmission conditions are given by the equilibrium of forces and the equality of the normal displacements of the solid and the fluid. The coupling of primal and dual-mixed finite element methods is applied to compute both the pressure of the scattered wave in the linearized fluid and the elastic vibrations that take place in the elastic body. The finite element subspaces consider continuous piecewise linear elements for the pressure and a Lagrange multiplier defined on the interface, and PEERS for the stress and rotation in the solid domain. We derive a reliable and efficient residual-based a posteriori error estimator for this coupled problem. Suitable auxiliary problems, the continuous inf-sup conditions satisfied by the bilinear forms involved, a discrete Helmholtz decomposition, and the local approximation properties of the Clément interpolant and Raviart–Thomas operator are the main tools for proving the reliability of the estimator. Then, Helmholtz decomposition, inverse inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are employed to show the efficiency. Finally, some numerical results confirming the reliability and efficiency of the estimator are reported.
Similar content being viewed by others
References
Agmon S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)
Alonso A.: Error estimators for a mixed method. Numer. Math. 74, 385–395 (1996)
Arnold D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)
Arnold D.N., Brezzi F., Douglas J.: PEERS: A new mixed finite element method for plane elasticity. Jpn. J. Appl. Math. 1, 347–367 (1984)
Babuška I., Ihlenburg F., Strouboulis T., Gangaraj S.K.: A posteriori error estimation for finite element solutions of Helmholtz’ equation. Part I. The quality of local indicators and estimators. Int. J. Numer. Methods Eng. 40(18), 3443–3462 (1997)
Babuška I., Ihlenburg F., Strouboulis T., Gangaraj S.K.: A posteriori error estimation for finite element solutions of Helmholtz’ equation – Part II. Estimation of the pollution error. Int. J. Numer. Methods Eng. 40(21), 3883–3900 (1997)
Barrios T., Gatica G.N., González M., Heuer N.: A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity. ESAIM Math. Model. Numer. Anal. 40(5), 843–869 (2006)
Bernardi C., Canuto C., Maday Y.: Generalized inf-sup conditions for Chebyshev spectral approximations of the Stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988)
Bielak J., MacCamy R.C.: Symmetric finite element and boundary integral coupling methods for fluid–solid interaction. Q. Appl. Math. 49, 107–119 (1991)
Bouillard Ph.: Influence of the pollution on the admissible field error estimation for FE solutions of the Helmholtz equation. Int. J. Numer. Methods Eng. 45(7), 783–800 (1999)
Braess D., Verfürth R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33, 2431–2444 (1996)
Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
Buffa A.: Remarks on the discretization of some non-coercive operator with applications to heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43(1), 1–18 (2005)
Carstensen C.: An a posteriori error estimate for a first kind integral equation. Math. Comput. 66(217), 139–155 (1997)
Carstensen C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66(218), 465–476 (1997)
Carstensen C., Dolzmann G.: A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81, 187–209 (1998)
Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Clément P.: Approximation by finite element functions using local regularisation. RAIRO Model. Math. Anal. Numer. 9, 77–84 (1975)
Colton D., Kress R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, Berlin (1998)
Gatica G.N.: A note on the efficiency of residual-based a-posteriori error estimators for some mixed finite element methods. Electron. Trans. Numer. Anal. 17, 218–233 (2004)
Gatica G.N., Maischak M.: A posteriori error estimates for the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differ. Equ. 21(3), 421–450 (2005)
Gatica G.N., Márquez A., Meddahi S.: Analysis of the coupling of primal and dual-mixed finite element methods for a two-dimensional fluid–solid interaction problem. SIAM J. Numer. Anal. 45(5), 2072–2097 (2007)
Gatica, G.N., Márquez, A., Meddahi, S.: Analysis of the coupling of BEM, FEM, and mixed-FEM for a two-dimensional fluid–solid interaction problem. Appl. Numer. Math. (2009). doi:10.1016/j.apnum.2008.12.025
Gatica G.N., Meddahi S.: An a-posteriori error estimate for the coupling of BEM and mixed-FEM. Numer. Funct. Anal. Optim. 20(5–6), 449–472 (1999)
Hsiao, G.C.: The coupling of BEM and FEM—a brief review. In: Boundary Elements X, vol. 1, pp. 431–445. Springer, New York (1988)
Hsiao G.C.: On the boundary-field equation methods for fluid-structure interactions. In: Jentsch, L., Tröltzsch, F. (eds) Problems and Methods in Mathematical Physics, Teubner-Text zur Mathematik, Band 34, pp. 79–88. B. G. Teubner Veriagsgesellschaft, Stuttgart (1994)
Hsiao G.C., Kleinman R.E., Li R.-X., van der Berg P.M.: Residual error—a simple and sufficient estimate of actual error in solutions of boundary integral equations. In: Grill, S., Brebbia, C.A., Cheng, A.H.-D. (eds) Proceedings of the Fifth International Conference on Boundary Element Technology, vol. 1, pp. 73–83. Computational Mechanics Publications, Boston (1990)
Hsiao G.C., Kleinman R.E., Roach G.F.: Weak solutions of fluid–solid interaction problems. Math. Nachr. 218, 139–163 (2000)
Hsiao G.C., Kleinman R.E., Schuetz L.S.: On variational formulations of boundary value problems for fluid–solid interactions. In: McCarthy, M.F., Hayes, M.A. (eds) Elastic Wave Propagation, pp. 321–326. Elsevier, North-Holland (1989)
Ihlenburg F.: Finite Element Analysis of Acoustic Scattering. Springer, New York (1998)
Ihlenburg F., Babuška I.: Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation. Int. J. Numer. Methods Eng. 38(22), 3745–3774 (1995)
Irimie S., Boiullard Ph.: A reliable a posteriori error estimator for the finite element solution of the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 190(31), 4027–4042 (2001)
Kress R.: Linear Integral Equations. Springer, Berlin (1989)
Lonsing M., Verfürth R.: A posteriori error estimators for mixed finite element methods in linear elasticity. Numer. Math. 97(4), 757–778 (2004)
Lovadina C., Stenberg R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75(256), 1659–1674 (2006)
Meddahi S., Márquez A., Selgas V.: Computing acoustic waves in an inhomogeneous medium of the plane by a coupling of spectral and finite elements. SIAM J. Numer. Anal. 41, 1729–1750 (2003)
Meddahi S., Márquez A., Selgas V.: A new BEM-FEM coupling strategy for two-dimensional fluid–solid interaction problems. J. Comput. Phys. 199, 205–220 (2004)
Meddahi S., Sayas F.-J.: Analysis of a new BEM-FEM coupling for two dimensional fluid–solid interaction. Numer. Methods Partial Differ. Equ. 21(6), 1017–1042 (2005)
Repin S., Sauter S., Smolianski A.: Two-sided a posteriori error estimates for mixed formulations of elliptic problems. SIAM J. Numer. Anal. 45(3), 928–945 (2007)
Roberts, J.E., Thomas, J.M.: Mixed and Hybrid Methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. Finite Element Methods (Part 1), vol. II. North-Holland, Amsterdam (1991)
Stephan E.P.: Coupling of boundary element methods and finite element methods. In: Stein, E., Borst, R., Hughes, T.J.R. (eds) Encyclopedia of Computational Mechanics, vol. 1, pp. 375–412. Wiley, New York (2004)
Stewart J.R., Hughes T.J.R.: A posteriori error estimation and adaptive finite element computation of the Helmholtz equation in exterior domains. Finite Elem. Anal. Des. 22(1), 15–24 (1996)
Stewart J.R., Hughes T.J.R.: An a posteriori error estimator and hp-adaptive strategy for finite element discretizations of the Helmholtz equation in exterior domains. Finite Elem. Anal. Des. 25(1–2), 1–26 (1996)
Stewart J.R., Hughes T.J.R.: Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: Computation of the constant and new measures of error estimator quality. Comput. Methods Appl. Mech. Eng. 131(3–4), 335–363 (1997)
Verfürth R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)
Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Chichester (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was partially supported by FONDAP and BASAL projects CMM, Universidad de Chile, by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción, and by Ministery of Education and Science of Spain through the Project MTM2007-65088.
Rights and permissions
About this article
Cite this article
Gatica, G.N., Hsiao, G.C. & Meddahi, S. A residual-based a posteriori error estimator for a two-dimensional fluid–solid interaction problem. Numer. Math. 114, 63–106 (2009). https://doi.org/10.1007/s00211-009-0250-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-009-0250-6