Skip to main content
Log in

A nonstandard mixed finite element family

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We show that standard mixed finite element methods, of second or higher degree, for second order elliptic equations can be modified by imposing additional continuity conditions for the flux, which reduces the dimension of the space. This reduced space still gives a stable method with an optimal order of convergence. We recall our postprocessing method and the a posteriori error estimator based on this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Arnold D.N., Brezzi F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19(1), 7–32 (1985)

    MATH  MathSciNet  Google Scholar 

  2. Arnold D.N., Falk R.S., Winther R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benzi M., Golub G.H., Liesen J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Boffi, D., Brezzi, F., Demkowicz, L., Durán, R.G., Falk, R.S., Fortin, M.: Mixed Finite Elements, Compatibility Conditions, and Applications. Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 26–July 1, 2006. Lecture Notes in Mathematics. Springer (2006)

  5. Bramble J.H., Xu J.: A local post-processing technique for improving the accuracy in mixed finite-element approximations. SIAM J. Numer. Anal. 26(6), 1267–1275 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezzi F., Douglas J. Jr, Durán R., Fortin M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51(2), 237–250 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    MATH  Google Scholar 

  8. Brezzi F., Douglas J. Jr, Marini L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lovadina C., Stenberg R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comp. 75(256), 1659–1674 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pitkäranta J., Stenberg R.: Analysis of some mixed finite element methods for plane elasticity equations. Math. Comp. 41(164), 399–423 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rusten T., Vassilevski P.S., Winther R.: Interior penalty preconditioners for mixed finite element approximations of elliptic problems. Math. Comp. 65(214), 447–466 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Stenberg R.: Analysis of mixed finite element methods for the Stokes problem: a unified approach. Math. Comput. 42, 9–23 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Stenberg R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48(4), 447–462 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stenberg R.: Some new families of finite elements for the Stokes equations. Numer. Math. 56(8), 827–838 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stenberg R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25(1), 151–167 (1991)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Stenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenberg, R. A nonstandard mixed finite element family. Numer. Math. 115, 131–139 (2010). https://doi.org/10.1007/s00211-009-0272-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0272-0

Mathematics Subject Classification (2000)