We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is concerned with the contractivity and asymptotic stability properties of the implicit Euler method (IEM) for nonlinear functional differential equations (FDEs). These properties are first analyzed for Volterra FDEs and then the analysis is extended to the case of neutral FDEs (NFDEs). Such an extension is particularly important since NFDEs are more general and have received little attention in the literature. The main result we establish is that the IEM with linear interpolation can completely preserve these stability properties of the analytical solution to such FDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker C.T.H.: Retarded differential equations. J. Comput. Appl. Math. 125, 309–335 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bellen A., Guglielmi N., Zennaro M.: On the contractivity and asymptotic stability of systems of delay differential equations of neutral type. BIT 39, 1–24 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellen A., Guglielmi N., Zennaro M.: Numerical stability of nonlinear delay differential equations of neutral type. J. Comput. Appl. Math. 125, 251–263 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bellen A., Zennaro M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  5. Bocharov G.A., Rihan F.A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125, 183–199 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brunner H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics, vol. 15. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  7. Hale J.K.: Theory of Functional Differential Equations. Springer, New York (1977)

    MATH  Google Scholar 

  8. Iserles A.: On the generalized pantograph functional differential equation. Eur. J. Appl. Math. 60, 575–589 (1993)

    MATH  MathSciNet  Google Scholar 

  9. Jackiewicz Z.: Adams methods for neutral functional differential equations. Numer. Math. 39, 221–230 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jackiewicz Z.: Quasilinear multistep methods and variable step predictor–corrector methods for neutral functional differential equations. SIAM J. Numer. Anal. 23, 423–452 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jackiewicz Z., Lo E.: Numerical solution of neutral functional differential equations by Adams methods in divided difference form. J. Comput. Appl. Math. 189, 592–605 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kolmanovskii V.B., Nosov V.R.: Stability of Functional Differential Equations. Academic Press, London (1986)

    MATH  Google Scholar 

  13. Kolmanovskii V.B., Myshkis A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer, Dordrecht (1999)

    MATH  Google Scholar 

  14. Li S.F.: Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces. Sci. China (Ser. A) 48, 372–387 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, S.F.: Contractivity and asymptotic stability properties of Runge-Kutta methods for Volterra functional differential equations. In: International Workshop on Numerical Analysis and Computational Methods for Functional Differential and Integral Equations, Hong Kong Baptist University (2007)

  16. Ma S.F., Yang Z.W., Liu M.Z.: H α-stability of modified Runge-Kutta methods for nonlinear neutral pantograph equations. J. Math. Anal. Appl. 335, 1128–1142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Richard J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667–1694 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sand J., Skelboe S.: Stability of backward Euler multirate methods and convergence of waveform relaxation. BIT 32, 350–366 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Söderlind G.: On nonlinear difference and differential equations. BIT 24, 667–680 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Söderlind G.: Bounds on nonlinear operators in finite-dimensional Banach spaces. Numer. Math. 50, 27–44 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Söderlind G.: The logarithmic norm. History and modern theory. BIT 46, 631–652 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Spijker M.N.: Contracivity in the numerical solution of initial value problems. Numer. Math. 42, 271–290 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  23. Torelli L.: Stability of numerical methods for delay differential equations. J. Comput. Appl. Math. 25, 15–26 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang W.S., Li S.F.: Stability analysis of nonlinear delay differential equations of neutral type. Math. Num. Sin. 26, 303–314 (2004)

    Google Scholar 

  25. Wang S.F., Li S.F.: On the one-leg θ-methods for solving nonlinear neutral functional differential equations. Appl. Math. Comput. 193, 285–301 (2007)

    Article  MathSciNet  Google Scholar 

  26. Wang W.S., Zhang Y., Li S.F.: Nonlinear stability of one-leg methods for delay differential equations of neutral type. Appl. Numer. Math. 58, 122–130 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang W.S., Li S.F., Su K.: Nonlinear stability of Runge-Kutta methods for neutral delay differential equations. J. Comput. Appl. Math. 214, 175–185 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang W.S., Wen L.P., Li S.F.: Nonlinear stability of θ-methods for neutral differential equations in Banach space. Appl. Math. Comput. 198, 742–753 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang W.S., Li S.F.: Stability analysis of θ-methods for nonlinear neutral functional differential equations. SIAM J. Sci. Comput. 30, 2181–2205 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, W.S.: Numerical analysis of nonlinear neutral functional differential equations. PhD Thesis, Xiangtan University (2008)

  31. Wang W.S., Li S.F., Wang W.Q.: Contractivity properties of a class of linear multistep methods for nonlinear neutral delay differential equations. Chaos, Solitons Fractals 40, 421–425 (2009)

    Article  MathSciNet  Google Scholar 

  32. Wang W.S., Zhang Y., Li S.F.: Stability of continuous Runge-Kutta-type methods for nonlinear neutral delay-differential equations. Appl. Math. Model. 33, 3319–3329 (2009)

    Article  MathSciNet  Google Scholar 

  33. Wen L.P., Wang W.S., Yu Y.X., Li S.F.: Nonlinear stability and asymptotic stability of implicit Euler method for stiff Volterra functional differential equations in Banach spaces. Appl. Math. Comput. 198, 582–591 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wen L.P., Yu Y.X., Li S.F.: Stability and asymptotic stability of θ-methods for nonlinear stiff Volterra functional differential equations in Banach spaces. J. Comput. Appl. Math. 230, 351–359 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wu J.H.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    MATH  Google Scholar 

  36. Zhang C.J., Li S.F.: Dissipativity and exponentially asymptotic stability of solutions for nonlinear neutral functional differential equations. Appl. Math. Comput. 119, 109–115 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wansheng Wang.

Additional information

This work was partially supported by the National Natural Science Foundation of China (Grant No. 10871078) and the China Postdoctoral Science Foundation Funded Project (Grant No. 20080440946, 200902437).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Zhang, C. Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space. Numer. Math. 115, 451–474 (2010). https://doi.org/10.1007/s00211-009-0281-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0281-z

Mathematics Subject Classification (2000)

Navigation