Skip to main content
Log in

Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We prove the existence of weak solutions to the harmonic map heat flow, and wave maps into spheres of nonconstant radii. Weak solutions are constructed as proper limits of iterates from a fully practical scheme based on lowest order conforming finite elements, where discrete Lagrange multipliers are employed to exactly meet the sphere constraint at mesh-points. Computational studies are included to motivate interesting dynamics in two and three spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34, 1708–1726 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alouges F., Jaisson P.: Convergence of a finite elements discretization for the Landau Lifshitz equations. Math. Models Methods Appl. Sci. 16, 299–316 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baňas, Ľ.: http://www.ma.hw.ac.uk/~lubomir/research.html

  4. Baňas Ľ., Prohl A., Slodička M.: Modeling of thermally assisted magnetodynamics. SIAM J. Numer. Anal. 47, 551–574 (2008)

    Article  MathSciNet  Google Scholar 

  5. Baňas Ľ., Bartels S., Prohl A.: A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation. SIAM J. Numer. Anal. 46, 1399–1422 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartels S.: Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43, 220–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartels S., Prohl A.: Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comp. 76, 1847–1859 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bartels S., Prohl A.: Convergence of an implicit finite element method for the Landau-Lifshitz equation. SIAM J. Numer. Anal. 44, 1405–1419 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bartels S., Prohl A.: Stable discretization of scalar and constrained vectorial Perona-Malik equation. Interfaces Free Boundaries 9, 431–453 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Barrett J.W., Bartels S., Feng X., Prohl A.: A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J. Numer. Anal. 45, 905–927 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bartels S., Feng X., Prohl A.: Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal. 46, 61–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bartels S., Lubich C., Prohl A.: Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comp. 78, 1269–1292 (2009)

    Article  MathSciNet  Google Scholar 

  13. Bizoń P., Chmaj T., Tabor Z.: Dispersion and collapse of wave maps. Nonlinearity 13, 1411–1423 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bizoń P., Chmaj T., Tabor Z.: Formation of singularities for equivariant (2 + 1)-dimensional wave maps into the 2-sphere. Nonlinearity 14, 1041–1053 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chang K.C., Ding W.Y., Ye R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36, 507–511 (1992)

    MATH  MathSciNet  Google Scholar 

  16. Chen Y.M., Struwe M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201, 69–74 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Coron J.-M., Ghidaglia J.-M.: Explosion en temps fini pour le flot des applications harmoniques. CR. Acad. Sci. Paris Ser. I 308, 339–344 (1989)

    MATH  MathSciNet  Google Scholar 

  19. Davis T.A., Duff I.S.: An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J. Matrix Anal. Appl. 18, 140–158 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grotowski, J.F., Shatah, J.: A note on geometric heat flows in critical dimensions. Preprint (2006). http://math.nyu.edu/faculty/shatah/preprints/gs06.pdf

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  22. Krieger J., Schlag W., Tataru D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171, 543–615 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kruzik M., Prohl A.: Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48, 439–483 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rodnianski, I., Sterbenz, J.: On the formation of singularities in the critical O(3) σ-model. Preprint (arXiv-series) (2006)

  25. Schmidt A., Siebert K.G.: ALBERT—software for scientific computations and applications. Acta Math. Univ. Comenian. (N.S.) 70, 105–122 (2000)

    MathSciNet  Google Scholar 

  26. Shatah J.: Weak solutions and development of singularities in the SU(2) σ model. Comm. Pure Appl. Math. 41, 459–469 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shatah, J., Struwe, M.: Geometric Wave Equations. New York University, Courant Institute of Mathematical Sciences, New York (1998)

  28. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. AMS (1997)

  29. Struwe M.: Geometric evolution problems. IAS/Park City Math. Series 2, 259–339 (1996)

    MathSciNet  Google Scholar 

  30. Struwe M.: On the evolution of harmonic maps of Riemannian surfaces. Math. Helv. 60, 558–581 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tang B., Sapiro G., Caselles V.: Diffusion of generated data on non-flat manifolds via harmonic maps theory: the direction diffusion case. Int. J. Comput. Vis. 36, 149–161 (2000)

    Article  Google Scholar 

  32. Tang B., Sapiro G., Caselles V.: Color image enhancement via chromaticity diffusion. IEEE Trans. Image Proc. 10, 701–707 (2001)

    Article  MATH  Google Scholar 

  33. Tataru D.: The wave maps equation. Bull. Am. Math. Soc. 41, 185–204 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vese L.A., Osher S.J.: Numerical methods for p-harmonic flows and applications to image processing. SIAM J. Numer. Anal. 40, 2085–2104 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Prohl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baňas, L., Prohl, A. & Schätzle, R. Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numer. Math. 115, 395–432 (2010). https://doi.org/10.1007/s00211-009-0282-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0282-y

Mathematics Subject Classification (2000)

Navigation