Skip to main content
Log in

Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This work is devoted to the analysis of a fully-implicit numerical scheme for the critical generalized Korteweg–de Vries equation (GKdV with p = 4) in a bounded domain with a localized damping term. The damping is supported in a subset of the domain, so that the solutions of the continuous model issuing from small data are globally defined and exponentially decreasing in the energy space. Based in this asymptotic behavior of the solution, we introduce a finite difference scheme, which despite being one of the first order, has the good property to converge in L 4-strong. Combining this strong convergence with discrete multipliers and a contradiction argument, we show that the smallness of the initial condition leads to the uniform (with respect to the mesh size) exponential decay of the energy associated to the scheme. Numerical experiments are provided to illustrate the performance of the method and to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics 4, Philadelphia, (1981)

  2. Ascher U., McLachlan R.: Multisymplectic box schemes and the Korteweg–de Vries equation. Appl. Numer. Math. 48(3–4), 255–269 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baker G.A., Dougalis V.A., Karakashian A.: Convergence of Galerkin approximations for the Korteweg–de Vries equation. Math. Comp. 40(162), 419–433 (1983)

    MATH  MathSciNet  Google Scholar 

  4. Bisognin E., Bisognin V., Sepúlveda M., Vera O.: Coupled system of Korteweg de Vries equations type in domains with moving boundaries. J. Comp. Appl. Math. 220(1–2), 290–321 (2008)

    Article  MATH  Google Scholar 

  5. Bona J.L., Dougalis V.A., Karakashian O.A., McKinney W.R.: Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Roy. Soc. Lond. Ser. A 351(1695), 107–164 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bona J.L., Dougalis V.A., Mitsotakis D.E.: Numerical solution of KdV–KdV systems of Boussinesq equations. I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74(2–3), 214–228 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bona J.L., Souganidis P.E., Strauss W.A.: Stability and instability of solitary waves of Korteweg–de Vries type. Proc. Roy. Soc. Lond. Ser. A 411(1841), 395–412 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bürger R., Coronel A., Sepúlveda M.: A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes. Math. Comp. 75(253), 91–112 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Butcher J.C.: Implicit Runge–Kutta processes. Math. Comp. 18, 50–64 (1964)

    MATH  MathSciNet  Google Scholar 

  10. Ceballos J.C., Sepúlveda M., Vera O.P.: The Korteweg–de Vries–Kawahara equation in a bounded domain and some numerical results. Appl. Math. Comput. 190(1), 912–936 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Colin T., Gisclon M.: An initial-boundary-value problem that approximate the quarter-plane problem for the Korteweg–de Vries equation. Nonlinear Anal. Ser. A Theory Methods. 46(6), 869–892 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eymard, R., Gallouët, T., Herbin, R.: The finite volume method. In: Ciarlet, P., Lions, J.-L. (eds) Handbook of Numerical Analysis, North Holland, pp. 713–1020 (2000)

  13. Faminskii A.V.: On an initial boundary value problem in a bounded domain for the generalized Korteweg–de Vries equation. Funct. Diff. Equ. 8(1–2), 183–194 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Furihata D.: Finite difference schemes for \({\frac{\partial u}{\partial t}=\left(\frac{\partial}{\partial x}\right)^{\alpha}\frac{\delta G}{\delta u}}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156(1), 181–205 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kato, T.: On the Cauchy problem for the (generalized) Korteweg–de Vries equation. In Studies in Appl. Math. Advances in Math. Suppl. Studies, vol. 8. pp. 93–130, Academic Press, Sew York (1983)

  16. Kenig C.E., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46(4), 527–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Linares F., Pazoto A.F.: On the exponential decay of the critical generalized Korteweg–de Vries equation with localized damping. Proc. Amer. Math. Soc. 135(5), 1515–1522 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lions, J.L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1. Collection de Recherches en Mathématiques Appliquées, 8, Masson, Paris (1988)

  19. Martel Y., Merle F.: Instability of solitons for the critical generalized Korteweg–de Vries equation. Geom. Funct. Anal. 11(1), 74–123 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Massarolo C.P., Menzala G.P., Pazoto A.F.: On the uniform decay for the Korteweg–de Vries equation with weak damping. Math. Methods Appl. Sci. 30(12), 1419–1435 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Matsuo T., Sugihara M., Furihata D., Mori M.: Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method. Jpn. J. Indust. Appl. Math. 19(3), 311–330 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Merle F.: Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Amer. Math. Soc. 14(3), 555–578 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Münch A., Pazoto A.: Uniform stabilization of a viscous numerical approximation for a locally damped wave equation. ESAIM Control Optim. Calc. Var. 13(2), 265–293 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13(3), 116–162 (1959)

    MathSciNet  Google Scholar 

  25. Nixon M.: The discretized generalized Korteweg–de Vries equation with fourth order nonlinearity. J. Comput. Anal. Appl. 5(4), 369–397 (2003)

    MATH  MathSciNet  Google Scholar 

  26. Pazoto A.F.: Unique continuation and decay for the Korteweg–de Vries equation with localized damping. ESAIM Control Optim. Calc. Var. 11(3), 473–486 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Perla Menzala G., Vasconcellos C.F., Zuazua E.: Stabilization of the Korteweg–de Vries equation with localized damping. Quart. Appl. Math. 60(1), 111–129 (2002)

    MATH  MathSciNet  Google Scholar 

  28. Petersson J.H.: Best constants for Gagliardo–Nirenberg inequalities on the real line. Nonlinear Anal. 67(2), 587–600 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Renardy M., Rogers R.C.: An Introduction to Partial Differential Equations. Texts in Applied Mathematics, vol. 13. Springer, New York (1993)

    Google Scholar 

  30. Rosier L.: Exact boundary controllability for the Korteweg–de Vries equation on a bonded domain. ESAIM Control Optim. Calc. Var. 2, 33–55 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rosier L., Zhang B.Y.: Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain. SIAM J. Control Optim. 45(3), 927–956 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sepúlveda M., Vera Villagrán O.P.: Numerical methods for a transport equation perturbed by dispersive terms of 3rd and 5th order. Sci. Ser. A Math. (New Series) 13, 13–21 (2006)

    MATH  Google Scholar 

  33. Simon, J.: Compact sets in the space L p(0, TB). Ann. Mat. Pura App. CXLVI:65–96 (1987)

  34. Tao T.: Why are solitons stable?. Bull. Amer. Math. Soc. 46(1), 1–33 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tcheugoué-Tébou L.R., Zuazua E.: Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numer. Math. 95(3), 563–598 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Thomas, L.H.: Elliptic Problems in Linear Difference Equations over a Network, Watson Sci. Comput. Lab. Rept., Columbia University, New York, (1949)

  37. Zhao X.L., Huang T.Z.: On the inverse of a general pentadiagonal matrix. Appl. Math. Comput. 202(2), 639–646 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sepúlveda.

Additional information

This work was supported by grant 49.0987/2005-2 of the Cooperation CNPq/CONICYT (Brasil–Chile). M.S. has been also supported by Fondecyt Project #1070694, FONDAP and BASAL projects CMM, Universidad de Chile, and CI2MA, Universidad de Concepción. O.V.V. has been supported by Postdoctoral fellowship of LNCC (National Laboratory for Scientific Computation), and he is grateful for the dependences of the LNCC while he realized postdoctorate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazoto, A.F., Sepúlveda, M. & Villagrán, O.V. Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping. Numer. Math. 116, 317–356 (2010). https://doi.org/10.1007/s00211-010-0291-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0291-x

Mathematics Subject Classification (2000)

Navigation