Skip to main content
Log in

Structured backward error for palindromic polynomial eigenvalue problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A detailed structured backward error analysis for four kinds of palindromic polynomial eigenvalue problems (PPEP)

$$ \left(\sum_{\ell=0}^d A_{\ell} \lambda^{\ell} \right)x=0, \quad A_{d-\ell}=\varepsilon A_{\ell}^{\star} \quad{\rm for}\,\ell=0,1,\ldots,\lfloor d/2\rfloor, $$

where \({\star}\) is one of the two actions: transpose and conjugate transpose, and \({\varepsilon\in\{\pm 1\}}\). Each of them has its application background with the case \({\star}\) taking transpose and ε = 1 attracting a great deal of attention lately because of its application in the fast train modeling. Computable formulas and bounds for the structured backward errors are obtained. The analysis reveals distinctive features of PPEP from general polynomial eigenvalue problems (PEP) investigated by Tisseur (Linear Algebra Appl 309:339–361, 2000) and by Liu and Wang (Appl Math Comput 165:405–417, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bora S.: Structured eigenvalue condition number and backward error of a class of polynomial eigenvalue problems. SIAM J. Matrix Anal. Appl. 31(3), 900–917 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bunch J.R., Demmel J., Van Loan C.F.: The strong stability of algorithms for solving symmetric linear systems. SIAM J. Matrix Anal. Appl. 10(4), 494–499 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Byers, R., Mackey, D.S., Mehrmann, V., Xu, H.: Symplectic, BVD, and palindromic approaches to discrete-time control problems. Technical report, Preprint 14-2008, Institute of Mathematics, Technische Universität Berlin, 2008

  4. Chu E.K.-W., Hwang T.-M., Lin W.-W., Wu C.-T.: Vibration of fast trains, palindromic eigenvalue problems and structure-preserving doubling algorithms. J. Comput. Appl. Math. 229, 237–252 (2008)

    Article  MathSciNet  Google Scholar 

  5. Higham D.J., Higham N.J.: Backward error and condition of structured linear systems. SIAM J. Matrix Anal. Appl. 13(1), 162–175 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Higham D.J., Higham N.J.: Structured backward error and condition of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 20(2), 493–512 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Higham N.J., Tisseur F., Van Dooren P.: Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl. 351–352, 455–474 (2002)

    Article  MathSciNet  Google Scholar 

  8. Hilliges, A.: Numerische Lösung von quadratischen Eigenwertproblemen mit Anwendungen in der Schiendynamik. Master’s thesis, Technical University Berlin, Germany, July 2004

  9. Hilliges, A., Mehl, C., Mehrmann, V.: On the solution of palindramic eigenvalue problems. In: Proceedings of 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä, Finland, 2004

  10. Hochstenbach M.E., Plestenjak B.: Backward error, condition numbers, and pseudospectra for the multiparameter eigenvalue problem. Linear Algebra Appl. 375, 63–81 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huang T.-M., Lin W.-W., Qian J.: Numerically stable, structure-preserving algorithms for palindromic quadratic eigenvalue problems arising from vibration of fast trains. SIAM J. Matrix Anal. Appl. 30(4), 1566–1592 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ipsen I.C.F.: Accurate eigenvalues for fast trains. SIAM News 37, 1–2 (2004)

    Google Scholar 

  13. Liu X.-G., Wang Z.-X.: A note on the backward errors for Hermite eigenvalue problems. Appl. Math. Comput. 165(2), 405–417 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mackey D.S., Mackey N., Mehl C., Mehrmann V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28, 1029–1051 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mackey D.S., Mackey N., Mehl C., Mehrmann V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28, 971–1004 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schröder, C.: A QR-like algorithm for the palindromic eigenvalue problem. Technical report, Preprint 388, TU Berlin, Matheon, Germany, 2007

  17. Schröder, C.: URV decomposition based structured methods for palindromic and even eigenvalue problems. Technical report, Preprint 375, TU Berlin, MATHEON, Germany, 2007

  18. Tisseur F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309, 339–361 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tisseur F.: Stability of structured Hamiltonian eigensolvers. SIAM J. Matrix Anal. Appl. 23(1), 103–125 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tisseur F., Meerbergen K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–386 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Xu H.: On equivalence of pencils from discrete-time and continuous-time control. Linear Algebra Appl. 414, 97–124 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zaglmayr, S.: Eigenvalue problems in saw-filter simulations. Diplomarbeit, Institute of Computational Mathematics, Johannes Kepler University Linz, Linz, Austria, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Cang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, RC., Lin, WW. & Wang, CS. Structured backward error for palindromic polynomial eigenvalue problems. Numer. Math. 116, 95–122 (2010). https://doi.org/10.1007/s00211-010-0297-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0297-4

Mathematics Subject Classification (2000)

Navigation