Skip to main content
Log in

Multiscale analysis in Sobolev spaces on bounded domains

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study a multiscale scheme for the approximation of Sobolev functions on bounded domains. Our method employs scattered data sites and compactly supported radial basis functions of varying support radii at scattered data sites. The actual multiscale approximation is constructed by a sequence of residual corrections, where different support radii are employed to accommodate different scales. Convergence theorems for the scheme are proven, and it is shown that the condition numbers of the linear systems at each level are independent of the level, thereby establishing for the first time a mathematical theory for multiscale approximation with scaled versions of a single compactly supported radial basis function at scattered data points on a bounded domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeVore R.A., Sharpley R.C.: Besov spaces on domains in \({{\mathbb{R}}^d}\). Trans. AMS 335, 843–864 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Floater M.S., Iske A.: Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math. 73, 65–78 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Franke R.: Scattered data interpolation: tests of some methods. Math. Comput. 38, 181–200 (1982)

    MATH  MathSciNet  Google Scholar 

  4. Hackbusch W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, Stuttgart (1986)

    MATH  Google Scholar 

  5. Hales S.J., Levesley J.: Error estimates for multilevel approximation using polyharmonic splines. Numer. Algorithms 30, 1–10 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Le Gia, Q.T., Sloan, I., Wendland, H.: Multiscale analysis in Sobolev spaces on the sphere. Preprint Sussex/Sydney (2009)

  7. Narcowich F.J., Schaback R., Ward J.D.: Multilevel interpolation and approximation. Appl. Comput. Harmon. Anal. 7, 243–261 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Narcowich F.J., Ward J.D., Wendland H.: Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions. Constr. Approx. 24, 175–186 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Schaback R.: Creating surfaces from scattered data using radial basis functions. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces, pp. 477–496. Vanderbilt University Press, Nashville (1995)

    Google Scholar 

  10. Schaback R.: Error estimates and condition number for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schaback R.: On the efficiency of interpolation by radial basis functions. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds) Surface Fitting and Multiresolution Methods, pp. 309–318. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  12. Schaback, R.: The missing Wendland functions. Adv. Comput. Math. (2009). doi:10.1007/s10444-009-9142-7

  13. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1971)

    Google Scholar 

  14. Wahba, G.: Spline Models for Observational Data. CBMS-NSF, Regional Conference Series in Applied Mathematics. Siam, Philadelphia

  15. Wendland H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wendland H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  17. Wendland H., Rieger C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101, 643–662 (2005)

    Article  MathSciNet  Google Scholar 

  18. Wu Z.: Characterization of positive definite functions. In: Dæhlen, M., Lyche, T., Schumaker, L.L. (eds) Mathematical Methods for Curves and Surfaces, pp. 573–578. Vanderbilt University Press, Nashville (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Wendland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendland, H. Multiscale analysis in Sobolev spaces on bounded domains. Numer. Math. 116, 493–517 (2010). https://doi.org/10.1007/s00211-010-0313-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0313-8

Mathematics Subject Classification (2000)

Navigation