Skip to main content
Log in

A posteriori error estimates for mixed finite element approximations of parabolic problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We derive residual based a posteriori error estimates for parabolic problems on mixed form solved using Raviart–Thomas–Nedelec finite elements in space and backward Euler in time. The error norm considered is the flux part of the energy, i.e. weighted L 2(Ω) norm integrated over time. In order to get an optimal order bound, an elementwise computable post-processed approximation of the scalar variable needs to be used. This is a common technique used for elliptic problems. The final bound consists of terms, capturing the spatial discretization error and the time discretization error and can be used to drive an adaptive algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, San Diego (1978)

    Google Scholar 

  2. Akrivis G., Makridakis C., Nochetto R.: A posteriori error estimates for the Crank–Nicolson method for parabolic problems. Math. Comp. 75, 511–531 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed finite elements, compatibility conditions, and applications. Lecture Notes in Mathematics, vol. 1939. Springer, Berlin (2006)

  4. Braess D., Verfürth R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33, 2431–2444 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brezzi F., Fortin M.: Mixed and hybrid finite element methods. Springer, Berlin (1991)

    MATH  Google Scholar 

  6. Carstensen C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66, 465–476 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen L., Holst M., Xu J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78, 35–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Casćon J.M., Ferragut L., Asensio M.I.: Space–time adaptive algorithm for the mixed parabolic problem. Numer. Math. 103, 367–392 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dawson C., Kirby R.: Solution of parabolic equations by backward euler-mixed finite element methods on a dynamically changing mesh. SIAM J. Numer. Anal. 37(2), 423–442 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica, pp. 1–54 (1995)

  11. Karakatsani F., Makridakis C.: A posteriori estimates for approximations of time-dependent Stokes equations. IMA J. Numer. Anal. 27, 741–764 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lakkis O., Makridakis C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75, 1627–1658 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Larson M.G., Målqvist A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108, 487–500 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Larsson, S., Thomée, V.: Partial differential equations. Texts in Applied Mathemtics, vol. 45. Springer, Berlin (2003)

  15. Lovadina C., Stenberg R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75, 1659–1674 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Makridakis C., Nochetto R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nédélec J.-C.: A new family of mixed finite elements in R 3. Numer. Math. 50, 57–81 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Quateroni A., Valli A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    Google Scholar 

  19. Raviart, P., Thomas, J.: A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, vol. 606. Springer, Berlin, pp. 292–315 (1977)

  20. Stenberg R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25, 151–167 (1991)

    MATH  MathSciNet  Google Scholar 

  21. Thomée, V.: Galerkin finite element methods for parabolic problems 2nd edn. Series in Computational Mathematics, vol. 25. Springer, Berlin (2006)

  22. Verfürth R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40, 195–212 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Målqvist.

Additional information

A. Målqvist’s work is supported by The Göran Gustafsson Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larson, M.G., Målqvist, A. A posteriori error estimates for mixed finite element approximations of parabolic problems. Numer. Math. 118, 33–48 (2011). https://doi.org/10.1007/s00211-010-0328-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0328-1

Mathematics Subject Classification (2000)

Navigation