Skip to main content
Log in

A continuation method to solve polynomial systems and its complexity

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In a recent work Shub (Found. Comput. Math. 9:171–178, 2009), Shub obtained a new upper bound for the number of steps needed to continue a known zero η 0 of a system f 0, to a zero η T of an input system f T , following the path of pairs (f t , η t ), where \({f_t,t\in[0,T]}\) is a polynomial system and f t (η t ) = 0. He proved that if one can choose the step-size in an optimal way, then the number of steps is essentially bounded by the length of the path of (f t , η t ) in the so-called condition metric. However, the proof of that result in Shub (Found. Comput. Math. 9:171–178, 2009) is not constructive. We give an explicit description of an algorithm which attains that complexity bound, including the choice of step-size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beltrán, C., Dedieu, J.-P., Malajovich, G., Shub, M.: Convexity properties of the condition number II (2010) to appear

  2. Beltrán C., Dedieu J.-P., Malajovich G., Shub M.: Convexity properties of the condition number. SIAM J. Matrix Anal. Appl. 31(3), 1491–1506 (2010)

    Article  MATH  Google Scholar 

  3. Beltrán, C., Leykin, A.: Certified numerical homotopy tracking (2010) to appear

  4. Beltrán, C., Pardo, L.M.: Fast linear homotopy to find approximate zeros of polynomial systems. Found. Comput. Math. (2010) to appear

  5. Beltrán C., Pardo L.M.: On Smale’s 17th problem: a probabilistic positive solution. Found. Comput. Math. 8(1), 1–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beltrán C., Pardo L.M.: Smale’s 17th problem: Average polynomial time to compute affine and projective solutions. J. Am. Math. Soc. 22, 363–385 (2009)

    Article  Google Scholar 

  7. Beltrán C., Shub M.: Complexity of Bezout’s Theorem VII: distance estimates in the condition metric. Found. Comput. Math. 9(2), 179–195 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beltrán C., Shub M.: A note on the finite variance of the averaging function for polynomial system solving. Found. Comput. Math. 10(1), 115–125 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blum L., Cucker F., Shub M., Smale S.: Complexity and Real Computation. Springer, New York (1998)

    Google Scholar 

  10. Boito P., Dedieu J.-P.: The condition metric in the space of rectangular full rank matrices. SIAM J. Matrix Anal. Appl. 31(5), 2580–2602 (2010)

    Article  Google Scholar 

  11. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    Google Scholar 

  12. Flett, T.M.: Differential analysis. In: Differentiation, Differential Equations and Differential Inequalities, pp. vii+359. Cambridge University Press, Cambridge (1980)

  13. García C.B., Zangwill W.I.: Finding all solutions to polynomial systems and other systems of equations. Math. Program. 16(2), 159–176 (1979)

    Article  MATH  Google Scholar 

  14. Li, T.-Y.: Solving polynomial systems by homotopy continuation methods, Computer mathematics (Tianjin, 1991), Nankai Ser. Pure Appl. Math. Theoret. Phys., vol. 5, World Sci. Publ., River Edge, NJ, 1993, pp. 18–35

  15. Li T.-Y., Tsai C.-H.: HOM4PS-2.Opara: parallelization of HOM4PS-2.O for solving polynomial systems. Parallel Comput. 35(4), 226–238 (2009)

    Article  MathSciNet  Google Scholar 

  16. Leykin, A., Verschelde, J., Zhao, A.: Higher-order deflation for polynomial systems with isolated singular solutions, Algorithms in algebraic geometry, IMA Vol. Math. Appl., vol. 146, Springer, New York (2008), pp. 79–97

  17. Morgan A.: Solving Polynomial Systems using Continuation for Engineering and Scientific Problems. Prentice Hall Inc., Englewood Cliffs (1987)

    MATH  Google Scholar 

  18. Morgan A., Sommese A.: Computing all solutions to polynomial systems using homotopy continuation. Appl. Math. Comput. 24(2), 115–138 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Renegar J.: On the efficiency of Newton’s method in approximating all zeros of a system of complex polynomials. Math. Oper. Res. 12(1), 121–148 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rudin W.: Real and Complex Analysis, third ed. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  21. Shub, M.: Some remarks on Bezout’s theorem and complexity theory, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990) (New York), Springer (1993), pp. 443–455

  22. Shub M.: Complexity of Bézout’s theorem. VI. Geodesics in the condition (number) metric. Found. Comput. Math. 9(2), 171–178 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Smale S.: The fundamental theorem of algebra and complexity theory. Bull. Am. Math. Soc. (N.S.) 4(1), 1–36 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shub M., Smale S.: Complexity of Bézout’s theorem. I. Geometric aspects. J. Am. Math. Soc. 6(2), 459–501 (1993)

    MATH  MathSciNet  Google Scholar 

  25. Shub, M., Smale, S.: Complexity of Bezout’s theorem. II. Volumes and probabilities, Computational algebraic geometry (Nice, 1992), Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA (1993), pp. 267–285

  26. Shub, M., Smale, S.: Complexity of Bezout’s theorem. III. Condition number and packing, J. Complexity 9 no. 1, 4–14, Festschrift for Joseph F. Traub, Part I (1993)

  27. Shub, M., Smale, S.: Complexity of Bezout’s theorem. V. Polynomial time, Theoret. Comput. Sci. 133 no. 1, 141–164 (1994), Selected papers of the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993)

  28. Shub M., Smale S.: Complexity of Bezout’s theorem. IV. Probability of success; extensions. SIAM J. Numer. Anal. 33(1), 128–148 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sommese, A.J., Wampler, C.W.: II. The Numerical Solution of Systems of Polynomials. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2005), Arising in engineering and science

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Beltrán.

Additional information

C. Beltrán was partially supported by MTM2007-62799, Spanish Ministry of Science.

The author wants to thank Mike Shub for many helpful conversations, and the referees for their many comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltrán, C. A continuation method to solve polynomial systems and its complexity. Numer. Math. 117, 89–113 (2011). https://doi.org/10.1007/s00211-010-0334-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0334-3

Mathematics Subject Classification (2000)

Navigation