Skip to main content
Log in

Multilevel particle-partition of unity method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is concerned with the particle-partition of unity method, a meshfree generalization of the finite element method. We present the fundamental construction principles and abstract approximation properties of the resulting function spaces V PU. Moreover, we discuss the construction of optimal approximation spaces for a reference application in linear elastic fracture mechanics in particular. The presented construction not only yields optimal convergence rates globally independently of the regularity of the solution, our method shows a super-convergence near the singular points of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babuška I., Banerjee U., Osborn J.E.: Meshless and generalized finite element methods: a survey of some major results. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 26, pp. 1–20. Springer, New York (2002)

    Google Scholar 

  2. Babuška I., Caloz G., Osborn J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška I., Melenk J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40, 727–758 (1997)

    Article  MATH  Google Scholar 

  4. Béchet E., Minnebo H., Moës N., Burgardt B.: Improved implementation and robustness study of the x-fem for stress analysis around cracks. Int. J. Numer. Methods Eng. 64, 1033–1056 (2005)

    Article  MATH  Google Scholar 

  5. Belytschko T., Black T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belytschko T., Lu Y.Y., Gu L.: Crack propagation by element-free Galerkin methods. Eng. Frac. Mech. 51, 295–315 (1995)

    Article  Google Scholar 

  7. Belytschko T., Moës N., Usui S., Parimi C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50, 993–1013 (2001)

    Article  MATH  Google Scholar 

  8. Duarte C.A., Kim D.J.: Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput. Methods Appl. Mech. Eng. 197((6–8), 487–504 (2007). doi:10.1016/j.cma.2007.08.017

    MathSciNet  Google Scholar 

  9. Duarte C.A., Reno L.G., Simone A.: A higher order generalized FEM for through-the-thickness branched cracks. Int. J. Numer. Methods Eng. 72, 325–351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duarte C.A.M., Babuška I., Oden J.T.: Generalized finite element methods for three dimensional structural mechanics problems. Comput. Struct. 77, 215–232 (2000)

    Article  Google Scholar 

  11. Duarte C.A.M., Liszka O.N.H.T.J., Tworzydlo W.W.: A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Int. J. Numer. Methods Eng. 190, 2227–2262 (2001)

    MATH  Google Scholar 

  12. Duarte C.A.M., Oden J.T.: hp Clouds—a meshless method to solve boundary value problems. Numer. Methods PDE 12, 673–705 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erdogan F., Sih G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–527 (1963)

    Google Scholar 

  14. Griebel, M., Oswald, P., Schweitzer, M.A.: A particle-partition of unity method—part VI: a p-robust multilevel solver. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations II. Lecture Notes in Computational Science and Engineering, vol. 43, pp. 71–92. Springer, New York (2005)

  15. Griebel M., Schweitzer M.A.: A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDE. SIAM J. Sci. Comput. 22, 853–890 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Griebel M., Schweitzer M.A.: A particle-partition of unity method—part II: efficient cover construction and reliable integration. SIAM J. Sci. Comput. 23, 1655–1682 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Griebel M., Schweitzer M.A.: A particle-partition of unity method—part III: a multilevel solver. SIAM J. Sci. Comput. 24, 377–409 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griebel M., Schweitzer M.A.: A particle-partition of unity method—part V: boundary conditions. In: Hildebrandt, S., Karcher, H. (eds) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 517–540. Springer, Berlin (2002)

    Google Scholar 

  19. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method—part VII: adaptivity. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering, vol. 57, pp. 121–148. Springer, New York (2006)

  20. Günther F.C., Liu W.K.: Implementation of boundary conditions for meshless methods. Comput. Methods Appl. Mech. Eng. 163, 205–230 (1998)

    Article  MATH  Google Scholar 

  21. Han W., Meng X.: Some studies of the reproducing kernel particle method. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 26, pp. 193–210. Springer, New York (2002)

    Google Scholar 

  22. Huang R., Sukumar N., Prévost J.-H.: Modeling quasi-static crack growth with the extended finite element method. Int. J. Solids Struct. 40, 7539–7552 (2003)

    Article  MATH  Google Scholar 

  23. Huerta, A., Belytschko, T., Fernández-Méndez, T., Rabczuk, T.: Meshfree methods. In: Encyclopedia of Computational Mechanics, vol. 1, chap. 10, pp. 279–309. Wiley, New York (2004)

  24. Krongauz Y., Belytschko T.: Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Eng. 131, 133–145 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Laborde P., Renard Y., Pommier J., Salaün M.: Higher order extended finite element method for cracked domains. Int. J. Numer. Methods Eng. 64, 354–381 (2005)

    Article  MATH  Google Scholar 

  26. Lu Y.Y., Belytschko T., Gu L.: A new implementation of the element free Galerkin method. Comput. Math. Appl. Mech. Eng. 113, 397–414 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moës N., Dolbow J., Belytschko T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  28. Mohammadi S.: Extended Finite Element Method. Blackwell, Amsterdam (2008)

    Book  MATH  Google Scholar 

  29. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1970–1971)

    Google Scholar 

  30. Oden, J.T., Duarte, C.A.: Clouds, cracks and FEM’s. In: Recent Developments in Computational and Applied Mechanics. International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain, pp. 302–321 (1997)

  31. Riker, C., Holzer, S.M.: The mixed-cell-complex partition-of-unity method. Comput. Methods Appl. Mech. Eng. 198, 1235–1248 (2009, accepted)

    Google Scholar 

  32. Schweitzer, M.A.: A parallel multilevel partition of unity method for elliptic partial differential equations. In: Lecture Notes in Computational Science and Engineering, vol. 29. Springer, New York (2003)

  33. Schweitzer M.A.: A particle-partition of unity method. In: PartVIII:hierarchicalenrichment. Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial IV, vol. 65, pp. 279–302. Springer, Berlin (2008)

    Google Scholar 

  34. Schweitzer, M.A.: Meshfree and generalized finite element methods. Habilitationsschrift, Institut für Numerische Simulation, Universität Bonn (2008)

  35. Schweitzer, M.A.: Stable enrichment and local preconditioning in the particle-partition of unity method. Tech. Rep., Sonderforschungsbereich 611, Rheinische Friedrich-Wilhelms-Univeristät Bonn (2008)

  36. Schweitzer M.A.: An adaptive hp-version of the multilevel particle-partition of unity method. Comput. Methods Appl. Mech. Eng. 198, 1260–1272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schweitzer M.A.: An algebraic treatment of essential boundary conditions in the particle-partition of unity method. SIAM J. Sci. Comput. 31, 1581–1602 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Strouboulis T., Babuška I., Copps K.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181, 43–69 (2000)

    Article  MATH  Google Scholar 

  39. Strouboulis T., Copps K., Babuška I.: The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190, 4081–4193 (2001)

    Article  MATH  Google Scholar 

  40. Strouboulis T., Zhang L., Babuška I.: Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids. Comput. Methods Appl. Mech. Eng. 192, 3109–3161 (2003)

    Article  MATH  Google Scholar 

  41. Szabó B., Babuška I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Alexander Schweitzer.

Additional information

M. A. Schweitzer was supported in part by the Sonderforschungsbereich 611 Singular phenomena and scaling in mathematical models funded by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweitzer, M.A. Multilevel particle-partition of unity method. Numer. Math. 118, 307–328 (2011). https://doi.org/10.1007/s00211-010-0346-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0346-z

Mathematics Subject Classification (2000)

Navigation