Abstract
In this paper we consider the issue of sliding motion in Filippov systems on the intersection of two or more surfaces. To this end, we propose an extension of the Filippov sliding vector field on manifolds of co-dimension p, with p ≥ 2. Our model passes through the use of a multivalued sign function reformulation. To justify our proposal, we will restrict to cases where the sliding manifold is attractive. For the case of co-dimension p = 2, we will distinguish between two types of attractive sliding manifold: “node-like” and “spiral-like”. The case of node-like attractive manifold will be further extended to the case of p ≥ 3. Finally, we compare our model to other existing methodologies on some examples.
Similar content being viewed by others
References
Acary V., Brogliato B.: Numerical methods for nonsmooth dynamical systems. Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2008)
Alexander J.C., Seidman T.: Sliding modes in intersecting switching surfaces, I: Blending. Houston J. Math. 24, 545–569 (1998)
Aubin J.-P., Cellina A.: Differential inclusions. Springer, Berlin (1984)
Bartolini G., Ferrara A.: A switching controller for systems with hard uncertainties. IEEE Trans. Circuits Syst. I 50, 984–990 (2003)
Bartolini G., Pisano A., Punta E., Usai E.: A survey of applications of second-order sliding mode control mechanical systems. Int. J. Control 76, 875–892 (2003)
Batt G., Rogers D., de Jong H., Geiselmann J.: Qualitative analysis and verification of hybrid models of genetics regulatory networks: Nutritional stress response in escherichia coli. In: Morari, M., Thiele, L. (eds) HSCC, LNCS., pp. 134–150. Springer, Berlin (2005)
Boiko I.: Discontinuous Control Systems. Birkhauser, Boston (2009)
Brogliato, B.: Implicit euler numerical simulation of sliding mode systems. In: Conference SDS 2010. http://www.dm.uniba.it/~delbuono/sds10/LectureBrogliatoSDS2010.pdf
Casey R., de Jong H., Gouze J.-L.: Piecewise-linear models of genetics regulatory networks: Equilibria and their stability. J. Math. Biol. 52, 27–56 (2006)
Corradini M.L., Orlando G.: Linear unstable plants with saturating actuators: robust stabilization by a time varying sliding surface. Automatica 43, 88–94 (2007)
Davila J., Fridman L., Levant A.: Second order sliding mode observers for mechanical systems. IEEE Trans. Autom. Control 50, 1785–1789 (2005)
de Jong H., Gouze J.-L., Hernandez C., Page M., Sari T., Geiselmann J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004)
de Jong H., Gouze J.-L., Hernandez C., Sari T., Geiselmann J.: Dealing with discontinuities in the qualitative simulation of genetic regulatory network. In: Harmelen, F. (ed.) Proceedings of the 15th European Conference on Artificial Intelligence., pp. 725–730. IOS Press, Amsterdam (2002)
di Bernardo M., Budd C.J., Champneys A.R., Kowalczyk P.: Piecewise-smooth Dynamical Systems. Theory and Applications, Applied Mathematical Sciences 163. Springer-Verlag, Berlin (2008)
Dieci, L., Guglelmi, N.: Regularization methods for discontinuous differential equations
Dieci L., Lopez L.: Sliding motion in Filippov differential systems: Theoretical results and a computational approach. SIAM J. Numer. Anal. 47, 2023–2051 (2009)
Edwards C., Spurgeron S.K.: Sliding Mode Control: Theory and Applications. Taylor and Francis, New York (1998)
Filippov A.F.: Differential Equations with Discontinuous Right-Hand Sides, Mathematics and Its Applications. Kluwer Academic, Dordrecht (1988)
Fridman L., Levant A.: Higher order sliding modes. In: Barbot, J.P., Perruguetti, W. (eds) Sliding Mode Control in Engineering., pp. 263–293. Marcel Dekker, New York (2002)
Fusco G., Guglielmi N.: A regularization for discontinuous differential equations with application to state-dependent delay differential equations of neutral. J. Differ. Equ. 250, 3230–3279 (2011)
Galvanetto U.: Computational techniques for nonlinear dynamics in multiple frictions oscillators. Comput. Methods Appl. Mech. Eng. 163, 373–382 (1998)
Galvanetto U.: Non-linear dynamics of multiple frictions oscillators. Comput. Methods Appl. Mech. Eng. 178, 291–306 (1999)
Gouze J.-L., Sari T.: A class of piecewise linear differential equations arsing in biological models. Dyn. Syst. 17, 299–319 (2002)
Johansson K.H., Rantzer A., Astrom K.J.: Fast swiyches in relay feedback systems. Automatica 35, 539–552 (1999)
Leine R.I.: Bifurcations of equilibria in mechanical systems. Physica D 223, 121–137 (2006)
Leine R.I., van Campen D.H.: Discontinuous fold bifurcations in non-smooth dynamical systems. Arch. Appl. Mech. 72, 138–146 (2002)
Leine R.I., van Campen D.H., van de Vrande B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105–164 (2000)
Llibre J., da Silva P.R., Teixeira M.A.: Regularization of discontinuous vector fields via singular perturbation. J. Dyn. Differ. Equ. 19, 309–331 (2009)
Llibre J., da Silva P.R., Teixeira M.A.: Studies of singularities of nonsmooth dynamical systems via singular perturbation. SIAM J. Appl. Dyn. Syst. 8, 508–526 (2009)
Sotomayor, J., Teixeira, M.A.: Regularization of discontinuous vector field. In: International Conference on Differential Equations, pp. 207–223, (1996)
Stewart D.E.: A high accuracy method for solving ODEs with discontinuity right-hand side. Numer. Math. 58, 299–328 (1990)
Stewart D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42, 3–39 (2000)
Utkin V.I.: Sliding Modes and Their Application in Variable Structure Systems. MIR Publisher, Moskow (1978)
Utkin V.I.: Sliding Mode in Control and Optimization. Springer, Berlin (1992)
Utkin V.I., Chang H.-C.: Sliding mode control on electro-mechanical systems. Math. Probl. Eng. 8, 451–473 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dieci, L., Lopez, L. Sliding motion on discontinuity surfaces of high co-dimension. A construction for selecting a Filippov vector field. Numer. Math. 117, 779–811 (2011). https://doi.org/10.1007/s00211-011-0365-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-011-0365-4