Abstract
The aim of this paper is to devise an adaptive timestep control in the contact-stabilized Newmark method (ContacX) for dynamical contact problems between two viscoelastic bodies in the framework of Signorini’s condition. In order to construct a comparative scheme of higher order accuracy, we extend extrapolation techniques. This approach demands a subtle theoretical investigation of an asymptotic error expansion of the contact-stabilized Newmark scheme. On the basis of theoretical insight and numerical observations, we suggest an error estimator and a timestep selection which also cover the presence of contact. Finally, we give a numerical example.
Similar content being viewed by others
References
Ahn J., Stewart D.E.: Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. 29(1), 43–71 (2009)
Bastian P., Birken K., Johannsen K., Lang S., Neuß N., Rentz-Reichert H., Wieners C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)
Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Kornhuber R., Ohlberger M., Sander O.: A generic interface for parallel and adaptive scientific computing. Part II: implementation and tests in dune. Computing 82(2–3), 121–138 (2008)
Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Ohlberger M., Sander O.: A generic interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82(2–3), 103–119 (2008)
Deuflhard P., Bornemann F.: Scientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics, vol. 42. Springer, New York (2002)
Deuflhard P., Krause R., Ertel S.: A contact-stabilized Newmark method for dynamical contact problems. Int. J. Numer. Methods Eng. 73(9), 1274–1290 (2007)
Doyen D., Ern A., Piperno S.: Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. 33(1), 223–249 (2011)
Duvaut G., Lions J.L.: Inequalities in Mechanics and Physics. Springer, New York (1976)
Eck, C.: Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung. PhD thesis, Universität Stuttgart (1996)
Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)
Gräser C., Kornhuber R.: Multigrid methods for obstacle problems. J. Comput. Math. 27, 1–44 (2009)
Hager C., Hüeber S., Wohlmuth B.: A stable energy conserving approach for frictional contact problems based on quadrature formulas. Int. J. Numer. Methods Eng. 73(2), 205–225 (2008)
Hairer E., Lubich C.: Asymptotic expansions of the global error of fixed-stepsize methods. Numer. Math. 45, 345–360 (1982)
Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Computational Mathematics. 2nd edn. Springer, Berlin (2006)
Kane C., Repetto E.A., Ortiz M., Marsden J.E.: Finite element analysis of nonsmooth contact. Comput. Methods Appl. Mech. Eng. 180, 1–26 (1999)
Khenous, H.B., Laborde, P., Renard, Y.: On the discretization of contact problems in elastodynamics. In: Lecture Notes in Appl. Comput. Mech. 27(5), 31–38 (2006)
Khenous H.B., Laborde P., Renard Y.: Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A/Solids 27, 918–932 (2008)
Kikuchi N., Oden J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)
Klapproth, C.: Adaptive numerical integration for dynamical contact problems. Freie Universität Berlin (2010)
Klapproth C., Deuflhard P., Schiela A.: A perturbation result for dynamical contact problems. Numer. Math. Theor. Meth. Appl. 2(3), 237–257 (2009)
Klapproth C., Schiela A., Deuflhard P.: Consistency results on Newmark methods for dynamical contact problems. Numer. Math. 116(1), 65–94 (2010)
Kornhuber R., Krause R.: Adaptive multilevel methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4, 9–20 (2001)
Kornhuber R., Krause R., Sander O., Deuflhard P., Ertel S.: A monotone multigrid solver for two body contact problems in biomechanics. Comput. Vis. Sci. 11(1), 3–15 (2008)
Krause, R.: Monotone multigrid methods for Signorini’s problem with friction. PhD thesis, FU Berlin (2000). http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000000469
Krause, R., Walloth, M.: Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Technical report, Institute of Computational Science, University of Lugano. ICS Preprint 2009-08 (2009)
Laursen T.A.: Computational Contact and Impact Mechanics. Springer-Verlag, Berlin (2003)
Laursen T.A., Chawla V.: Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40(5), 863–886 (1997)
Laursen T.A., Love G.R.: Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework. Int. J. Numer. Methods Eng. 53(2), 245–274 (2002)
Mignot F.: Contrôle dans les inequations variationelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)
Schechter E.: Handbook of Analysis and its Foundations. Academic Press, New York (1997)
Wohlmuth B., Krause R.: Monotone methods on nonmatching grids for nonlinear contact problems. SIAM J. Sci. Comput. 25(1), 324–347 (2003)
Zeidler E.: Nonlinear Functional Analysis and Applications II A/B. Springer, New York (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was supported by the DFG Research Center Matheon, “Mathematics for key technologies: Modelling, simulation, and optimization of real-world processes”, Berlin.
Rights and permissions
About this article
Cite this article
Klapproth, C., Schiela, A. & Deuflhard, P. Adaptive timestep control for the contact-stabilized Newmark method. Numer. Math. 119, 49–81 (2011). https://doi.org/10.1007/s00211-011-0374-3
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-011-0374-3