Skip to main content
Log in

Adaptive timestep control for the contact-stabilized Newmark method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The aim of this paper is to devise an adaptive timestep control in the contact-stabilized Newmark method (ContacX) for dynamical contact problems between two viscoelastic bodies in the framework of Signorini’s condition. In order to construct a comparative scheme of higher order accuracy, we extend extrapolation techniques. This approach demands a subtle theoretical investigation of an asymptotic error expansion of the contact-stabilized Newmark scheme. On the basis of theoretical insight and numerical observations, we suggest an error estimator and a timestep selection which also cover the presence of contact. Finally, we give a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn J., Stewart D.E.: Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. 29(1), 43–71 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bastian P., Birken K., Johannsen K., Lang S., Neuß N., Rentz-Reichert H., Wieners C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

    Article  MATH  Google Scholar 

  3. Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Kornhuber R., Ohlberger M., Sander O.: A generic interface for parallel and adaptive scientific computing. Part II: implementation and tests in dune. Computing 82(2–3), 121–138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bastian P., Blatt M., Dedner A., Engwer C., Klöfkorn R., Ohlberger M., Sander O.: A generic interface for parallel and adaptive scientific computing. Part I: abstract framework. Computing 82(2–3), 103–119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deuflhard P., Bornemann F.: Scientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics, vol. 42. Springer, New York (2002)

    Google Scholar 

  6. Deuflhard P., Krause R., Ertel S.: A contact-stabilized Newmark method for dynamical contact problems. Int. J. Numer. Methods Eng. 73(9), 1274–1290 (2007)

    Article  MathSciNet  Google Scholar 

  7. Doyen D., Ern A., Piperno S.: Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. 33(1), 223–249 (2011)

    Article  MathSciNet  Google Scholar 

  8. Duvaut G., Lions J.L.: Inequalities in Mechanics and Physics. Springer, New York (1976)

    MATH  Google Scholar 

  9. Eck, C.: Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung. PhD thesis, Universität Stuttgart (1996)

  10. Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  11. Gräser C., Kornhuber R.: Multigrid methods for obstacle problems. J. Comput. Math. 27, 1–44 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Hager C., Hüeber S., Wohlmuth B.: A stable energy conserving approach for frictional contact problems based on quadrature formulas. Int. J. Numer. Methods Eng. 73(2), 205–225 (2008)

    Article  MATH  Google Scholar 

  13. Hairer E., Lubich C.: Asymptotic expansions of the global error of fixed-stepsize methods. Numer. Math. 45, 345–360 (1982)

    Article  MathSciNet  Google Scholar 

  14. Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Computational Mathematics. 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  15. Kane C., Repetto E.A., Ortiz M., Marsden J.E.: Finite element analysis of nonsmooth contact. Comput. Methods Appl. Mech. Eng. 180, 1–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khenous, H.B., Laborde, P., Renard, Y.: On the discretization of contact problems in elastodynamics. In: Lecture Notes in Appl. Comput. Mech. 27(5), 31–38 (2006)

  17. Khenous H.B., Laborde P., Renard Y.: Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A/Solids 27, 918–932 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kikuchi N., Oden J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)

    MATH  Google Scholar 

  19. Klapproth, C.: Adaptive numerical integration for dynamical contact problems. Freie Universität Berlin (2010)

  20. Klapproth C., Deuflhard P., Schiela A.: A perturbation result for dynamical contact problems. Numer. Math. Theor. Meth. Appl. 2(3), 237–257 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Klapproth C., Schiela A., Deuflhard P.: Consistency results on Newmark methods for dynamical contact problems. Numer. Math. 116(1), 65–94 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kornhuber R., Krause R.: Adaptive multilevel methods for Signorini’s problem in linear elasticity. Comput. Vis. Sci. 4, 9–20 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kornhuber R., Krause R., Sander O., Deuflhard P., Ertel S.: A monotone multigrid solver for two body contact problems in biomechanics. Comput. Vis. Sci. 11(1), 3–15 (2008)

    Article  MathSciNet  Google Scholar 

  24. Krause, R.: Monotone multigrid methods for Signorini’s problem with friction. PhD thesis, FU Berlin (2000). http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000000469

  25. Krause, R., Walloth, M.: Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Technical report, Institute of Computational Science, University of Lugano. ICS Preprint 2009-08 (2009)

  26. Laursen T.A.: Computational Contact and Impact Mechanics. Springer-Verlag, Berlin (2003)

    Google Scholar 

  27. Laursen T.A., Chawla V.: Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Eng. 40(5), 863–886 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Laursen T.A., Love G.R.: Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework. Int. J. Numer. Methods Eng. 53(2), 245–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mignot F.: Contrôle dans les inequations variationelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schechter E.: Handbook of Analysis and its Foundations. Academic Press, New York (1997)

    MATH  Google Scholar 

  31. Wohlmuth B., Krause R.: Monotone methods on nonmatching grids for nonlinear contact problems. SIAM J. Sci. Comput. 25(1), 324–347 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zeidler E.: Nonlinear Functional Analysis and Applications II A/B. Springer, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Klapproth.

Additional information

This research was supported by the DFG Research Center Matheon, “Mathematics for key technologies: Modelling, simulation, and optimization of real-world processes”, Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klapproth, C., Schiela, A. & Deuflhard, P. Adaptive timestep control for the contact-stabilized Newmark method. Numer. Math. 119, 49–81 (2011). https://doi.org/10.1007/s00211-011-0374-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0374-3

Mathematics Subject Classification (2000)