Abstract
An error analysis of Runge–Kutta convolution quadrature is presented for a class of non-sectorial operators whose Laplace transform satisfies, besides the standard assumptions of analyticity in a half-plane Re s > σ 0 and a polynomial bound \({\operatorname{O}(|s|^{\mu_1})}\) there, the stronger polynomial bound \({\operatorname{O}(s^{\mu_2})}\) in convex sectors of the form \({|\operatorname*{arg} s| \leq \pi/2-\theta}\) for θ > 0. The order of convergence of the Runge–Kutta convolution quadrature is determined by μ 2 and the underlying Runge–Kutta method, but is independent of μ 1. Time domain boundary integral operators for wave propagation problems have Laplace transforms that satisfy bounds of the above type. Numerical examples from acoustic scattering show that the theory describes accurately the convergence behaviour of Runge–Kutta convolution quadrature for this class of applications. Our results show in particular that the full classical order of the Runge–Kutta method is attained away from the scattering boundary.
Similar content being viewed by others
References
Bamberger, A., Ha-Duong, T.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé d’une onde acoustique. Math. Meth. Appl. Sci. 8, 405–435, 598–608 (1986)
Banjai L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2010)
Banjai, L., Lubich, Ch.: An error analysis of Runge-Kutta convolution quadrature. BIT (2011, to appear)
Banjai L., Sauter S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47(1), 227–249 (2008)
Hackbusch, W., Kress, W., Sauter, S.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation by cutoff and panel-clustering. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis: Mathematical Aspects and Applications, vol. 29, pp. 113–134. Springer Lecture Notes in Applied and Computational Mechanics (2006)
Hackbusch W., Kress W., Sauter S.A.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. IMA J. Numer. Anal. 29(1), 158–179 (2009)
Hairer, E., Wanner, G.: Solving ordinary differential equations. II. In: Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996)
Kress W., Sauter S.: Numerical treatment of retarded boundary integral equations by sparse panel clustering. IMA J. Numer. Anal. 28(1), 162–185 (2008)
Laliena A.R., Sayas F.-J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112(4), 637–678 (2009)
Lubich Ch.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67, 365–389 (1994)
Lubich Ch.: Convolution quadrature revisited. BIT 44(3), 503–514 (2004)
Lubich Ch., Ostermann A.: Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comp. 60(201), 105–131 (1993)
Schädle A., López-Fernández M., Lubich Ch.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)
Schanz M.: Wave Propagation in Viscoelastic and Poroelastic Continua. A Boundary Element Approach. Lecture Notes in Applied and Computational Mechanics 2. Springer, New York (2001)
Wang X., Wildman R.A., Weile D.S., Monk P.: A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics. IEEE Trans. Antennas Propag. 56(8, part 1), 2442–2452 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Banjai, L., Lubich, C. & Melenk, J.M. Runge–Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119, 1–20 (2011). https://doi.org/10.1007/s00211-011-0378-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-011-0378-z