Skip to main content
Log in

How to build all Chebyshevian spline spaces good for geometric design?

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In the present work we determine all Chebyshevian spline spaces good for geometric design. By Chebyshevian spline space we mean a space of splines with sections in different Extended Chebyshev spaces and with connection matrices at the knots. We say that such a spline space is good for design when it possesses blossoms. To justify the terminology, let us recall that, in this general framework, existence of blossoms (defined on a restricted set of tuples) makes it possible to develop all the classical geometric design algorithms for splines. Furthermore, existence of blossoms is equivalent to existence of a B-spline bases both in the spline space itself and in all other spline spaces derived from it by insertion of knots. We show that Chebyshevian spline spaces good for design can be described by linear piecewise differential operators associated with systems of piecewise weight functions, with respect to which the connection matrices are identity matrices. Many interesting consequences can be drawn from the latter characterisation: as an example, all Chebsyhevian spline spaces good for design can be built by means of integral recurrence relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry P.J.: de Boor-Fix dual functionals and algorithms for Tchebycheffian B-splines curves. Constr. Approx. 12, 385–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bister, D., Prautzsch, H.: A new approach to Tchebycheffian B-splines. In: Curves and Surfaces with Applications in CAGD, pp. 35–41. Vanderbilt University Press, Nashville (1997)

  3. Bosner, T.: Knot insertion algorithms for Chebyshev splines, PhD thesis, Department of Mathematics, University of Zagreb (2006)

  4. Buchwald B., Mühlbach G.: Construction of B-splines for generalized spline spaces generated from local ECT-systems. J. Comput. Appl. Math. 159, 249–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Costantini P., Lyche T., Manni C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dyn N., Edelman A., Micchelli C.A.: On locally supported basis functions for the representation of geometrically continuous curves. Analysis 7, 313–341 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Dyn N., Micchelli C.A.: Piecewise polynomial spaces and geometric continuity of curves. Numer. Math. 54, 319–337 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goodman T.N.T.: Properties of β-splines. J. Approx. Theory 44, 132–153 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodman T.N.T.: Shape preserving representations. In: Lyche, T., Schumaker, L.L. (eds) Mathematical Methods in Computer Aided Geometric Design, pp. 333–357. Academic Press, New York (1989)

    Google Scholar 

  10. Karlin S.: Total Positivity. Stanford University Press, Stanford (1968)

    MATH  Google Scholar 

  11. Karlin S.J., Studden W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley Interscience, New York (1966)

    MATH  Google Scholar 

  12. Koch P.E., Lyche T.: Exponential B-splines in tension. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds) Approximation Theory VI, pp. 361–364. Academic Press, New York (1990)

    Google Scholar 

  13. Lyche T.: A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–178 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mazure M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mazure M.-L.: Chebyshev splines beyond total positivity. Adv. Comput. Math. 14, 129–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazure M.-L.: B-spline bases and osculating flats: one result of H-P. Seidel revisited. ESAIM-Math. Model. Numer. Anal. 36, 1177–1186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mazure M.-L.: Blossoms and optimal bases. Adv. Comp. Math. 20, 177–203 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mazure M.-L.: On the equivalence between existence of B-spline bases and existence of blossoms. Constr. Approx. 20, 603–624 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mazure M.-L.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mazure M.-L.: Towards existence of piecewise Chebyshevian B-spline bases. Numer. Alg. 39, 399–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mazure M.-L.: Extended Chebyshev piecewise spaces characterised via weight functions. J. Approx. Theory 145, 33–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazure M.-L.: Understanding recurrence relations for Chebyshevian B-splines via blossoms. J. Comput. Appl. Math. 219, 457–470 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazure M.-L.: On differentiation formulæ for Chebyshevian Bernstein and B-spline bases. Jaén J. Approx. 1, 111–143 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Mazure M.-L.: Ready-to-blossom bases and the existence of geometrically continuous piecewise Chebyshevian B-splines. CRAS 347, 829–834 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Mazure M.-L.: Finding all systems of weight functions associated with a given extended Chebyshev space. J. Approx. Theory 163, 363–376 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazure M.-L., Laurent P.-J.: Piecewise smooth spaces in duality: application to blossoming. J. Approx. Theory 98, 316–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mühlbach G.: ECT-B-splines defined by generalized divided differences. J. Comput. Appl. Math. 187, 96–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mühlbach G., Tang Y.: Computing ECT-B-splines recursively. Numer. Algebra 41, 35–78 (2006)

    Article  MATH  Google Scholar 

  29. Pottmann H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Design 10, 181–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pottmann, H.: A geometric approach to variation diminishing free-form curve schemes. In: Peña, J.M. (ed.) Shape Preserving Representations in Computer-Aided Geometric Design, pp. 119–131. Nova Science Publication (1999)

  31. Prautzsch H.: B-Splines with Arbitrary Connection Matrices. Constr. Approx. 20, 191–205 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ramshaw L.: Blossoms are polar forms. Comput. Aided Geom. Design 6, 323–358 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schumaker L.L.: Spline Functions. Wiley Interscience, New York (1981)

    MATH  Google Scholar 

  34. Seidel H.-P.: New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree. Math. Model. Numer. Anal. 26, 149–176 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazure, ML. How to build all Chebyshevian spline spaces good for geometric design?. Numer. Math. 119, 517–556 (2011). https://doi.org/10.1007/s00211-011-0390-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0390-3

Mathematics Subject Classification (2000)

Navigation