Skip to main content
Log in

A unification of unitary similarity transforms to compressed representations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper a new framework for transforming arbitrary matrices to compressed representations is presented. The framework provides a generic way of transforming a matrix via unitary similarity transformations to, e.g., Hessenberg, Hessenberg-like form and combinations of both. The new algorithms are deduced, based on the QR-factorization of the original matrix. Relying on manipulations with rotations, all the algorithms consist of eliminating the correct set of rotations, resulting in a matrix obeying the desired structural constraints. Based on this new reduction procedure we investigate further correspondences such as irreducibility, uniqueness of the reduction procedure and the link with (rational) Krylov methods. The unitary similarity transform to Hessenberg-like form as presented here, differs significantly from the one presented in earlier work. Not only does it use less rotations to obtain the desired structure, also the convergence to rational Ritz-values is not observed in the conventional approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckermann B., Güttel S., Vandebril R.: On the convergence of rational Ritz-values. SIAM J. Matrix Anal. Appl. 31(4), 1740–1774 (2010)

    Article  MATH  Google Scholar 

  2. Bevilacqua R., Bozzo E., Del Corso G.M.: Transformations to rank structures by unitary similarity. Linear Algebra Appl. 402, 126–134 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bevilacqua R., Del Corso G.M.: Structural properties of matrix unitary reduction to semiseparable form. Calcolo 41(4), 177–202 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bindel D., Demmel J.W., Kahan W., Marques O.A.: On computing givens rotations reliably and efficiently. ACM Trans. Math. Softw. 28(2), 206–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bini D., Boito P., Eidelman Y., Gemignani L., Gohberg I.: A fast implicit QR eigenvalue algorithm for companion matrices. Linear Algebra Appl. 432(8), 2006–2031 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bultheel, A., Van Barel, M.: Linear algebra, rational approximation and orthogonal polynomials. In: Studies in Computational Mathematics, vol. 6. North-Holland, Elsevier Science B.V., Amsterdam (1997)

  7. Chesnokov A., Deckers K., Van Barel M.: A numerical solution of the constrained weighted energy problem. J. Comput. Appl. Math. 235(4), 950–965 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delvaux S., Van Barel M.: A givens-weight representation for rank structured matrices. SIAM J. Matrix Anal. Appl. 29(4), 1147–1170 (2007)

    Article  MathSciNet  Google Scholar 

  9. Delvaux S., Van Barel M.: A QR-based solver for rank structured matrices. SIAM J. Matrix Anal. Appl. 30(2), 464–490 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Delvaux S., Van Barel M.: Unitary rank structured matrices. J. Comput. Appl. Math. 215(1), 268–287 (2008)

    Article  Google Scholar 

  11. Demmel J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  12. Eidelman Y., Gemignani L., Gohberg I.C.: On the fast reduction of a quasiseparable matrix to Hessenberg and tridiagonal forms. Linear Algebra Appl. 420(1), 86–101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fasino D.: Rational Krylov matrices and QR-steps on Hermitian diagonal-plus-semiseparable matrices. Numer. Linear Algebra Appl. 12(8), 743–754 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  15. Kuijlaars A.B.J.: Which eigenvalues are found by the Lanczos method?. SIAM J. Matrix Anal. Appl. 22(1), 306–321 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuijlaars A.B.J.: Convergence analysis of Krylov subspace iterations with methods from potential theory. SIAM Rev. 48(1), 3–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mastronardi N., Chandrasekaran S., Van Huffel S.: Fast and stable reduction of diagonal plus semi-separable matrices to tridiagonal and bidiagonal form. BIT 41(1), 149–157 (2003)

    Article  MathSciNet  Google Scholar 

  18. Mastronardi N., Schuermans M., Van Barel M., Vandebril R., Van Huffel S.: A Lanczos-like reduction of symmetric structured matrices into semiseparable ones. Calcolo 42(3–4), 227–241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Parlett, B.N.: The symmetric eigenvalue problem. In: Classics in Applied Mathematics, vol. 20. SIAM, Philadelphia (1998)

  20. Ruhe A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Van Barel, M., Fasino, D., Gemignani, L., Mastronardi, N.: Orthogonal rational functions and diagonal plus semiseparable matrices. In: Luk, F.T. (ed.) Advanced Signal Processing Algorithms, Architectures, and Implementations XII. Proceedings of SPIE, Bellingham, Washington, USA, vol. 4791, pp. 167–170 (2002)

  22. Van Barel M., Fasino D., Gemignani L., Mastronardi N.: Orthogonal rational functions and structured matrices. SIAM J. Matrix Anal. Appl. 26(3), 810–829 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Van Barel M., Vandebril R., Mastronardi N.: An orthogonal similarity reduction of a matrix into semiseparable form. SIAM J. Matrix Anal. Appl. 27(1), 176–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Van Barel M., Vandebril R., Van Dooren P., Frederix K.: Implicit double shift QR-algorithm for companion matrices. Numer. Math. 116(2), 177–212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vandebril R., Van Barel M., Mastronardi N.: Matrix Computations and Semiseparable Matrices. vol I. Johns Hopkins University Press, Linear Systems (2008)

    Google Scholar 

  26. Vandebril R., Van Barel M., Mastronardi N.: Matrix Computations and Semiseparable Matrices. Eigenvalue and Singular Value Methods, vol. II. Johns Hopkins University Press, Baltimore (2008)

    Google Scholar 

  27. Vandebril R., Van Camp E., Van Barel M., Mastronardi N.: On the convergence properties of the orthogonal similarity transformations to tridiagonal and semiseparable (plus diagonal) form. Numer. Math. 104, 205–239 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vandebril R., Van Camp E., Van Barel M., Mastronardi N.: Orthogonal similarity transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal. Numer. Math. 102, 709–726 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Watkins D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  30. Wilkinson J.H.: The Algebraic Eigenvalue Problem Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianna M. Del Corso.

Additional information

R. Vandebril has a grant as “Postdoctoraal Onderzoeker” from the Fund for Scientific Research—Flanders (Belgium). This research was also partially supported by the Research Council K.U. Leuven, project OT/11/055 (Spectral properties of (perturbed) normal matrices and their applications), and by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office, Belgian Network DYSCO (Dynamical Systems, Control, and Optimization). The research of G. M. Del Corso is partially supported by the PRIN project “Analisi di strutture di matrici: aspetti teorici, computazionali e applicazioni” Prot. n. 20083KLJEZ by the Italian MIUR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandebril, R., Del Corso, G.M. A unification of unitary similarity transforms to compressed representations. Numer. Math. 119, 641–665 (2011). https://doi.org/10.1007/s00211-011-0400-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0400-5

Mathematics Subject Classification (2000)