Skip to main content
Log in

Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study heat and moisture transport through porous textile materials with phase change, described by a degenerate, nonlinear and strongly coupled parabolic system. An uncoupled finite difference method with semi-implicit Euler scheme in time direction is proposed for the system. We prove the existence and uniqueness of the solution of the finite difference system. The optimal error estimates in both discrete L 2 and H 1 norms are obtained under the condition that the mesh sizes τ and h are smaller than a positive constant, which depends solely upon physical parameters involved. Numerical results are presented to confirm our theoretical analysis and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, A.,Wang, H.: An error estimate on a Galerkin method for modeling heat and moisture transfer in fibrous insulation. Numer. Methods Partial Diff. Equ. 24, 504–517 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Choudhary M.K., Karki K.C., Patankar S.V.: Mathematical modeling of heat transfer, condensation, and cappilary flow in porous insulation on a cold pipe. Int. J. Heat Mass Transfer 47, 5629–5638 (2004)

    Article  MATH  Google Scholar 

  3. Douglas J.J.: Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal. 20, 681–696 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ewing, R.E. (eds): The Mathematics of Reservoir Simulation. SIAM, Philadelphia (1984)

    Google Scholar 

  5. Eymard R., Fuhrmann J., Grtner K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems. Numer. Math. 102, 463–495 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fan, J., Cheng, X., Chen, Y.S.: An experimental investigation of moisture absorption and condensation in fibrous insulations under low temperature. Exp. Therm. Fluid Sci. 27, 723–729 (2002)

    Article  Google Scholar 

  7. Fan J., Luo Z., Li Y.: Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation. Int. J. Heat Mass Transfer 43, 2989–3000 (2000)

    Article  MATH  Google Scholar 

  8. Fan J., Cheng X., Wen X., Sun W.: An improved model of heat and moisture transfer with phase change and mobile condensates in fibrous insulation and comparison with experimental results. Int. J. Heat Mass Transfer 47, 2343–2352 (2004)

    Article  Google Scholar 

  9. Feng X.: On existence and uniqueness results for a coupled system modeling miscible displacement in porous medium. J. Math. Anal. Appl. 194, 883–910 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feng X.: Strong solutions to a nonlinear parabolic system modeling compressible miscible displacement in porous media. Nonlinear Anal. 23, 1515–1531 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoff, D.: Stability and convergence of finite difference methods for systems of nonlinear reaction–diffusion equations. SIAM J. Numer. Anal. 15, 1161–1177 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huang, H., Lin, P., Zhou, W.: Moisture transport and diffusive instability during bread baking. SIAM J. Appl. Math. 68, 222–238 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang H., Ye C., Sun W.: Moisture transport in fibrous clothing assemblies. J. Eng. Math. 61, 35–54 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jones F.E.: Evaporation of Water, pp. 25–43. Lewis Publishers Inc, Michigan (1992)

    Google Scholar 

  15. Jovanovic, B., Vulkov, L.: Numerical solution of a two-dimensional parabolic transmission problem. Int. J. Numer. Anal. Model. 7, 156–172 (2010)

    MathSciNet  Google Scholar 

  16. Kim, J.,Kang, K.:Anumerical method for the ternary Cahn–Hilliard system with a degenerate mobility. Appl. Numer. Math. 59, 1029–1042 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Le C., Ly N.G.: Heat and mass transfer in the condensing flow of steam through an absorbing fibrous medium. Int. J. Heat Mass Transfer 38, 81–89 (1995)

    Article  Google Scholar 

  18. Li B., Sun W.: The global existence of weak solution for nonisothermal multicomponent flow in porous textile media. SIAM J. Math. Anal. 42, 3076–3102 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, B., Sun,W.,Wang, Y.: Global existence of weak solution to the heat and moisture transport system in fibrous media. J. Diff. Equ. 249, 2618–2642 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lin P., Yang D.P.: An iterative perturbation method for the pressure equation in the simulation of miscible displacement in porous media. SIAM J. Sci. Comput. 19, 893–911 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mikelic, A.: Mathematical theory of stationary miscible filtration. J. Diff. Equ. 90, 186–202 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nakaki T., Tomoeda K.: A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: support splitting phenomena. SIAM J. Numer. Anal. 40, 945–964 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pao C., Lu X.: Block monotone iterative method for semilinear parabolic equations with nonlinear boundary conditions. SIAM J. Numer. Anal. 47, 4581–4606 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Russell, T.F., Celia, M.A.: An overview of research on Eulerian–Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25, 1215–1231 (2002)

    Article  Google Scholar 

  25. Samarskii A.A., Andreev B.B.: Finite Difference Methods for Elliptic Equation. Nauka, Moscow (1976)

    Google Scholar 

  26. Schroll H.J.: Convergence of implicit finite difference methods applied to nonlinear mixed systems. SIAM J. Numer. Anal. 33, 997–1013 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sun W., Yuan G.: Stability condition for difference schemes for parabolic systems. SIAM J. Numer. Anal. 38, 548–555 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, H.: An optimal-order error estimate for a family of ELLAM–MFEM approximations to porous medium flow. SIAM J Numer. Anal. 46, 2133–2152 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang, T.: Alternating direction finite volume element methods for three-dimensional parabolic equations. Numer. Math. Theor. Meth. Appl. 3, 499–522 (2010)

    MATH  Google Scholar 

  30. Ye, C., Huang, H., Fan, J., Sun, W.: Numerical study of heat and moisture transfer in textile materials by a finite volume method. Commun. Comput. Phys. 4, 929–948 (2008)

    Google Scholar 

  31. Ye C., Li B., Sun W.: Quasi-steady state and steady state models for heat and moisture transport in textile assemblies. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466, 2875–2896 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yuan G.W.: The uniqueness and stability for difference solutions with nonuniform meshes for nonlinear parabolic systems, Math. Numer. Sin. 22, 139–150 (2000)

    Google Scholar 

  33. Zhou Y., Shen L., Yuan G.: Finite difference method of first boundary problem for quasilinear parabolic systems V, Convergence of iterative difference schemes. Sci. China Ser. A 40, 1148–1157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhou Y.L.: General interpolation formulas for spaces of discrete functions with nonuniform meshes. J. Comput. Math. 13, 70–93 (1995)

    MATH  MathSciNet  Google Scholar 

  35. Zhang L.Y., Sun Z.Z.: A second-order linearized difference scheme on nonuniform meshes for nonlinear parabolic systems with Dirichlet boundary value conditions. Numer. Methods PDEs 19, 638–652 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Sun.

Additional information

The work was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (CityU 103410) and the National Natural Science Foundation of China (Project No. 10871044).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Sun, Zz. Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials. Numer. Math. 120, 153–187 (2012). https://doi.org/10.1007/s00211-011-0402-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0402-3

Mathematics Subject Classification (2010)

Navigation