Skip to main content
Log in

Convergence rates for Tikhonov regularization of a two-coefficient identification problem in an elliptic boundary value problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We investigate the convergence rates for Tikhonov regularization of the problem of simultaneously estimating the coefficients q and a in the Neumann problem for the elliptic equation \({{-{\rm div}(q \nabla u) + au = f \;{\rm in}\; \Omega, q{\partial u}/{\partial n} = g}}\) on the boundary \({{\partial\Omega, \Omega \subset \mathbb{R}^d, d \geq 1}}\) , when u is imprecisely given by \({{{z^\delta} \in {H^1}(\Omega), \|u-z^\delta\|_{H^1(\Omega)}\le\delta, \delta > 0}}\). We regularize this problem by minimizing the strictly convex functional of (q, a)

$$\begin{array}{lll}\int\limits_{\Omega}\left(q| \nabla (U(q,a)-z^{\delta})|^2 + a(U(q,a)-z^{\delta})^2\right)dx\\\quad+\rho\left(\|q-q^*\|^2_{L^2(\Omega)} + \|a-a^*\|^2_{L^2(\Omega)}\right)\end{array}$$

over the admissible set K, where ρ > 0 is the regularization parameter and (q*, a*) is an a priori estimate of the true pair (q, a) which is identified, and consider the unique solution of these minimization problem as the regularized one to that of the inverse problem. We obtain the convergence rate \({{{\mathcal {O}}(\sqrt{\delta})}}\), as δ → 0 and ρ ~ δ, for the regularized solutions under the simple and weak source condition

$${\rm there\;is\;a\;function}\;w^* \in V^*\;{\rm such\;that}\;{U^\prime (q^ \dagger, a^\dagger)}^*w^* = (q^\dagger - q^*, a^\dagger - a^*)$$

with \({{(q^\dagger, a^\dagger)}}\) being the (q*, a*)-minimum norm solution of the coefficient identification problem, U′(·, ·) the Fréchet derivative of U(·, ·), V the Sobolev space on which the boundary value problem is considered. Our source condition is without the smallness requirement on the source function which is popularized in the theory of regularization of nonlinear ill-posed problems. Furthermore, some concrete cases of our source condition are proved to be simply the requirement that the sought coefficients belong to certain smooth function spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acar R.: Identification of the coefficient in elliptic equations. SIAM J. Control Optim. 31(5), 1221–1244 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alessandrini G.: An identification problem for an elliptic equation in two variables. Ann. Mat. Pura Appl. 145, 265–296 (1986)

    Article  MathSciNet  Google Scholar 

  3. Anderssen R.S., Hegland M.: For numerical differentiation, dimensionality can be a blessing!. Math. Comput. 68(227), 1121–1141 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Systems & Control: Foundations & Applications, vol. 1, Birkhäuser Boston Inc., Boston (1989)

  5. Baumeister J., Kunisch K.: Identifiability and stability of a two-parameter estimation problem. Appl. Anal. 40(4), 263–279 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beirão da Veiga H.: On a stationary transport equation. Ann. Univ. Ferrara Sez. VII, Sci. Math. 32, 79–91 (1986)

    MATH  Google Scholar 

  7. Chan T.F., Tai X.C.: Identification of discontinuous coefficients in elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25(3), 881–904 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chan T.F., Tai X.C.: Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193, 40–66 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chavent G.: Nonlinear Least Squares for Inverse Problems. Theoretical Foundations and Step-by-Step Guide for Applications. Scientific Computation. Springer, New York (2009)

    Google Scholar 

  10. Chavent G., Kunisch K.: The output least squares identifiability of the diffusion coefficient from an H 1-observation in a 2-D elliptic equation. ESAIM Control Optim. Calc. Var. 8, 423–440 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen Z., Zou J.: An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems. SIAM J. Control Optim. 37(3), 892–910 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cherlenyak, I.: Numerische Lösungen inverser Probleme bei elliptischen Differentialgleichungen. Dr. rer. nat. Dissertation, Universität Siegen, 2009, Verlag Dr. Hut, München (2010)

  13. Colonius F., Kunisch K.: Output least squares stability in elliptic systems. Appl. Math. Optim. 19, 33–63 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Engl H.W., Hanke M., Neubauer A.: Regularization of Inverse Problems. Mathematics and its Applications. 375. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  15. Engl H.W., Kunisch K., Neubauer A.: Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Probl. 5, 523–540 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Falk R.: Error estimates for the numerical identification of a variable coefficient. Math. Comput. 40, 537–546 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hanke M.: A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Probl. 13, 79–95 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hào, D.N., Quyen, N.T.T.: Convergence rates for Tikhonov regularization of coefficient identification problems in Laplace-type equation, Inverse Problems 26, (2010) 125014 (23pp)

    Google Scholar 

  19. Hein T., Meyer M.: Simultaneous identification of independent parameters in elliptic equations—numerical studies. J. Inv. Ill Posed Probl. 16, 417–433 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ito K., Kunisch K.: The augmented Lagrangian method for parameter estimation in elliptic systems. SIAM J. Control Optim. 28(1), 113–136 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ito K., Kunisch K.: On the injectivity and linearization of the coefficient-to-solution mapping for elliptic boundary value problems. J. Math. Anal. Appl. 188, 1040–1066 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control, vol. 15, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

  23. Ito K., Kroller M., Kunisch K.: A numerical study of an augmented Lagrangian method for the estimation of parameters in elliptic systems. SIAM J. Sci. Stat. Comput. 12(4), 884–910 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaltenbacher B., Schöberl J.: A saddle point variational formulation for projection-regularized parameter identification. Numer. Math. 91(4), 675–697 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Keung Y.L., Zou J.: An efficient linear solver for nonlinear parameter identification problems. SIAM J. Sci. Comput 22, 1511–1526 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Knowles I.: Uniqueness for an elliptic inverse problem. SIAM J. Appl. Math. 59, 1356–1370 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Knowles, I.: Coefficient identification in elliptic differential equations. In: Direct and Inverse Problems of Mathematical Physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput., vol. 5, pp. 149–160. Kluwer Academic Publishers, Dordrecht (2000)

  28. Knowles I.: Parameter identification for elliptic problems. J. Comput. Appl. Math. 131, 19–175 (2001)

    Article  MathSciNet  Google Scholar 

  29. Knowles I., Le T., Yan A.: On the recovery of multiple flow parameters from transient head data. J. Comput. Appl. Math. 169(1), 1–15 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Knowles I., Wallace R.: A variational method for numerical differentiation. Numer. Math. 70(1), 91–110 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kohn R.V., Lowe B.D.: A variational method for parameter identification. RAIRO Modél. Math. Anal. Numér. 22(1), 119–158 (1988)

    MATH  MathSciNet  Google Scholar 

  32. Ladyzhenskaya O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1984)

    Google Scholar 

  33. Neubauer A.: Tikhonov regularization of nonlinear ill-posed problems in Hilbert scales. Appl. Anal. 46(1-2), 59–72 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  34. Richter G.R.: An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 41, 210–221 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sun N.-Z.: Inverse Problems in Groundwater Modeling. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  36. Troianiello G.M.: Elliptic Differential Equations and Obstacle Problems. Plenum, New York (1987)

    MATH  Google Scholar 

  37. Vainikko, G.: Identification of filtration coefficient. In: Ill-Posed Problems in Natural Sciences, (Moscow, 1991), pp. 202–213. VSP, Utrecht (1992)

  38. Vainikko G.: On the discretization and regularization of ill-posed problems with noncompact operators. Numer. Funct. Anal. Optim. 13, 381–396 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Vainikko G., Kunisch K.: Identifiabilty of the transmissivity coefficient in an elliptic boundary value problem. Zeischrift für Analysis und ihre Anwendungen 12, 327–341 (1993)

    MATH  MathSciNet  Google Scholar 

  40. Yeh W.W.G.: Review of parameter identification procedures in ground water hydrology: the inverse problem. Water Resour. Res. 22, 95–108 (1986)

    Article  Google Scholar 

  41. Zou J.: Numerical methods for elliptic inverse problems. Int. J. Comput. Math. 70, 211–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Nho Hào.

Additional information

Supported by NAFOSTED Grant 101.01.22.09.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hào, D.N., Quyen, T.N.T. Convergence rates for Tikhonov regularization of a two-coefficient identification problem in an elliptic boundary value problem. Numer. Math. 120, 45–77 (2012). https://doi.org/10.1007/s00211-011-0406-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0406-z

Mathematics Subject Classification (2000)

Navigation