Skip to main content
Log in

Interlacing of zeros of Gegenbauer polynomials of non-consecutive degree from different sequences

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A theorem due to Stieltjes’ states that if \({\{p_n\}_{n=0}^\infty}\) is any orthogonal sequence then, between any two consecutive zeros of p k , there is at least one zero of p n whenever k < n, a property called Stieltjes interlacing. We show that Stieltjes interlacing extends to the zeros of Gegenbauer polynomials \({C_{n+1}^{\lambda}}\) and \({C_{n-1}^{\lambda+t}}\), \({\lambda > -\frac 12}\), if 0 < tk + 1, and also to the zeros of \({C_{n+1}^{\lambda}}\) and \({C_{n-2}^{\lambda +k}}\) if \({k\in\{1,2,3\}}\). More generally, we prove that Stieltjes interlacing holds between the zeros of the kth derivative of \({C_{n}^{\lambda}}\) and the zeros of \({C_{n+1}^{\lambda}}\), \({k\in\{1,2,\dots,n-1\}}\) and we derive associated polynomials that play an analogous role to the de Boor–Saff polynomials in completing the interlacing process of the zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, A.I. (eds.) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Nat. Bur. Standards Appl. Series, vol. 55. U.S. Government Printing Office, Washington (1964)

  2. Beardon A.F.: The theorems of Stieltjes and Favard. CMFT 11(1), 247–262 (2011)

    MATH  Google Scholar 

  3. de Boor C., Saff E.B.: Finite sequences of orthogonal polynomials connected by a Jacobi matrix. Linear Algebra Appl. 75, 43–55 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Driver K., Jordaan K.: Interlacing of zeros of shifted sequences of one-parameter orthogonal polynomials. Numer. Math. 107, 615–624 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gibson P.C.: Common zeros of two polynomials in an orthogonal sequence. J. Approx. Theory 105, 129–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Segura J.: Interlacing of the zeros of contiguous hypergeometric functions. Numer. Algor. 49, 387–407 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Siegel K.L.: Uber einige Anwendungen diophantischen Approximationen. Abh.preus.Acad.Wiss 1, 1–70 (1929)

    Google Scholar 

  8. Szegő G.: Orthogonal Polynomials. American Mathematical Society, New York (1959)

    Google Scholar 

  9. Vinet L., Zhedanov A.: A characterization of classical and semiclassical orthogonal polynomials from their dual polynomials. J. Comput. Appl. Math. 172, 41–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Watson G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1944)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathy Driver.

Additional information

Research supported by the National Research Foundation grant no. 61095.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driver, K. Interlacing of zeros of Gegenbauer polynomials of non-consecutive degree from different sequences. Numer. Math. 120, 35–44 (2012). https://doi.org/10.1007/s00211-011-0407-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0407-y

Mathematics Subject Classification (2000)

Navigation