Skip to main content
Log in

A priori error estimates for space–time finite element discretization of semilinear parabolic optimal control problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, a priori error estimates for space–time finite element discretizations of optimal control problems governed by semilinear parabolic PDEs and subject to pointwise control constraints are derived. We extend the approach from Meidner and Vexler (SIAM Control Optim 47(3):1150–1177, 2008; SIAM Control Optim 47(3):1301–1329, 2008) where linear-quadratic problems have been considered, discretizing the state equation by usual conforming finite elements in space and a discontinuous Galerkin method in time. Error estimates for controls discretized by piecewise constant functions in time and cellwise constant functions in space are derived in detail and we explain how error estimate for further discretization approaches, e.g., cellwise linear discretization in space, the postprocessing approach from Meyer and Rösch (SIAM J Control Optim 43:970–985, 2004), and the variationally discrete approach from Hinze (J Comput Optim Appl 30:45–63, 2005) can be obtained. In addition, we derive an estimate for a setting with finitely many time-dependent controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arada N., Casas E., Tröltzsch F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Casas E.: Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35, 1297–1327 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Casas E., Mateos M.: Uniform convergence of the FEM. Applications to state constrained control problems. Comput. Appl. Math. 21(1), 67–100 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Casas E., Mateos M., Tröltzsch F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31, 193–220 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Casas E., Tröltzsch F.: Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybern. 31, 695–712 (2002)

    MATH  Google Scholar 

  6. Chrysafinos K.: Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE’s. ESAIM: M2AN 44(1), 189–206 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ciarlet P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Clément P.: Approximation by finite element functions using local regularization. Revue Franc. Automat. Inform. Rech. Operat. 9(2), 77–84 (1975)

    Google Scholar 

  9. Deckelnick K., Hinze M.: Variational discretization of parabolic control problems in the presence of pointwise state constraints. J. Comput. Math. 29, 1–16 (2011)

    MathSciNet  Google Scholar 

  10. Eriksson K., Estep D., Hansbo P., Johnson C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  11. Eriksson K., Johnson C., Thomée V.: Time discretization of parabolic problems by the discontinuous Galerkin method. M2AN Math. Model. Numer. Anal 19, 611–643 (1985)

    MATH  Google Scholar 

  12. Evans L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  13. Falk R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gascoigne: The finite element toolkit. http://www.gascoigne.uni-hd.de/

  15. Geveci T.: On the approximation of the solution of an optimal control problem problem governed by an elliptic equation. R.A.I.R.O. Analyse numérique/Numer. Anal. 13, 313–328 (1979)

    MATH  MathSciNet  Google Scholar 

  16. Hinze M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. J. Comput. Optim. Appl. 30, 45–63 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kröner A., Vexler B.: A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comput. Appl. Math. 230(2), 781–802 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lasiecka I., Malanowski K.: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybern. 7, 21–36 (1978)

    MATH  MathSciNet  Google Scholar 

  19. Malanowski K.: Convergence of approximations vs. regularity of solutions for convex, control–constrained optimal control problems. Appl. Math. Optim. 8, 69–95 (1981)

    Article  MathSciNet  Google Scholar 

  20. Mateos, M.: Problemas de Control Óptimo Gobernados por Ecuaciones Semilineales con Restricciones de Tipo Integral sobre el Gradiente del Estado. PhD thesis, Universidad de Cantabria (2000)

  21. Meidner, D., Rannacher, R., Vexler, B.: A priori error estimates for finite element discretizations of parabolic optimization problems with pointwise state constraints in time. SIAM Control Optim. (2011, accepted)

  22. Meidner D., Vexler B.: A priori error estimates for space–time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM Control Optim. 47(3), 1150–1177 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Meidner D., Vexler B.: A priori error estimates for space–time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints. SIAM Control Optim. 47(3), 1301–1329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meyer C., Rösch A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43, 970–985 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. RoDoBo: AC++ library for optimization with stationary and nonstationary PDEs. http://www.rodobo.uni-hd.de/

  26. Rösch A.: Error estimates for parabolic optimal control problems with control constraints. Z. für Analysis und ihre Anwendungen (ZAA) 23, 353–376 (2004)

    Article  MATH  Google Scholar 

  27. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)

    Google Scholar 

  28. Tröltzsch F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. AMS, Providence (2010)

    MATH  Google Scholar 

  29. Winther R.: Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Math. Pura Appl. 117(4), 173–206 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Vexler.

Additional information

Supported by DFG priority program SPP1253.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neitzel, I., Vexler, B. A priori error estimates for space–time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120, 345–386 (2012). https://doi.org/10.1007/s00211-011-0409-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0409-9

Mathematics Subject Classification (2000)

Navigation