Skip to main content
Log in

Some new residual-based a posteriori error estimators for the mortar finite element methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we propose some new residual-based a posteriori error estimators for the mortar finite element discretization of the second order elliptic equations with discontinuous coefficients. Reliability and efficiency of the estimators are given. Our analysis does not require any saturation assumptions and the mesh restrictions on the interface which are often needed in the literature. Numerical experiments are presented to confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42, 2320–2341 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth M.: A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements. SIAM J. Sci. Comput. 30, 189–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ainsworth M., Oden J.T.: A posteriori error estimation in finite element analysis. Pure Applied Mathematics. Wiley, New York (2000)

    Book  Google Scholar 

  4. Babuska I., Aziz A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardi C., Hecht F.: Error estimators for the mortar finite element discretization of the Laplace equations. Math. Comput. 71, 1371–1403 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Bernardi C., Maday Y., Patera A.: Domain decomposition by the mortar element method. In: Kaper, H.G., Garbey, M., Pieper, G.W. (eds) Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, pp. 269–286. Kluwer, Dordrecht (1993)

    Google Scholar 

  7. Bernardi C., Maday Y., Patera A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezis, H., Lions, J.L. (eds) Nonlinear Partial Differential Equations and their Application, College de France Seminar, vol. XI, pp. 13–51. Pitman, London (1994)

    Google Scholar 

  8. Bernardi C., Verfürth R.: Adaptive finite element methods for elliptic equations with nonsmooth coefficients. Numer. Math. 85, 579–608 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernardi C., Hecht F., Mghazli Z.: Mortar finite element discretization for the flow in a nonhomogeneous porous medium. Comput. Methods Appl. Mech. Eng. 196, 1554–1573 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner S.C: Poincaré–Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Byfut A., Gedicke J., Günther D., Reininghaus J., Wiedemann S.: FFW Documentation. Humboldt University of Berlin, Germany (2007)

    Google Scholar 

  12. Cai Z., Zhang S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47, 2132–2156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai Z., Zhang S.: Recovery-based error estimators for interface problems: mixed and nonconforming finite elements. SIAM J. Numer. Anal. 48, 30–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carstensen C., Hoppe R.H.W.: Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems. J. Numer. Math. 17, 27–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carstensen C., Bartels S., Jansche S.: A posteriori error estimates for nonconforming finite element methods. Numer. Math. 92, 233–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carstensen C., Hu J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carstensen C., Hu J., Orlando A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45, 62–82 (2007)

    Article  MathSciNet  Google Scholar 

  18. Chen Z., Dai S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coeficients. SIAM J. Sci. Comput. 24, 443–462 (2001)

    Article  MathSciNet  Google Scholar 

  19. Chen H., Xu X., Hoppe R.: Convergence and optimality of adaptive nonconforming finite element methods for nonsymmetric and indefinite problem. Numer. Math. 116, 383–419 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen L., Zhang C.: AFEM@matlab: a MATLAB package of Adaptive Finite Element Methods, Technical Report. University of Maryland, Maryland (2006)

    Google Scholar 

  21. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  22. Hu J., Shi Z.: A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kunert, G.: A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin (1999). Also PhD thesis, TU Chemnitz. http://archiv.tu-chemnitz.de/pub/1999/0012/index.html

  24. Luce R., Wohlmuth B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42, 1394–1414 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marcinkowski L.: The mortar element method with locally nonconforming elements. BIT 39, 716–739 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scott L.R., Zhang S.: Finite-element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Verfürth R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Technique. Wiley-Teubner, Chichester (1996)

    Google Scholar 

  28. Wheeler M.F., Yotov I.: A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43, 1021–1042 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wohlmuth B.I.: A residual based error estimator for mortar finite element discretizations. Numer. Math. 84, 143–171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wohlmuth B.I.: Hierarchical a posteriori error estimatiors for mortar finite element methods with Lagrange multipliers. SIAM J. Numer. Anal. 36, 1636–1658 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wohlmuth B.I.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wohlmuth B.I.: An a posteriori error estimator for two-body contact problems on non-matching meshes. J. Sci. Comput. 33, 25–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu X., Chen J.: Multigrid for the mortar element method for P 1 nonconforming element. Numer. Math. 88, 381–398 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang S., Wang M.: A posteriori estimators of nonconforming finite element method for fourth order elliptic perturbation problems. J. Comput. Math. 26, 554–577 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Additional information

This work was supported by the special funds for major state basic research projects (973) under 2011CB309701 and the National Science Foundation (NSF) of China under the Grants 10731060, 11071124 and 11171335.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Xu, X. Some new residual-based a posteriori error estimators for the mortar finite element methods. Numer. Math. 120, 543–571 (2012). https://doi.org/10.1007/s00211-011-0413-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0413-0

Mathematics Subject Classification (2000)

Navigation