Skip to main content
Log in

Accurate solutions of M-matrix algebraic Riccati equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is concerned with the relative perturbation theory and its entrywise relatively accurate numerical solutions of an M-matrix Algebraic Riccati Equations (MARE)

$$XDX - AX - XB + C = 0 $$

by which we mean the following conformally partitioned matrix

$$ \left( \begin{array}{ll}B\, \, -D\\-C\, \, A\end{array}\right)$$

is a nonsingular or an irreducible singular M-matrix. It is known that such an MARE has a unique minimal nonnegative solution \({\Phi}\) . It is proved that small relative perturbations to the entries of A, B, C, and D introduce small relative changes to the entries of the nonnegative solution \({\Phi}\) . Thus the smaller entries \({\Phi}\) do not suffer bigger relative errors than its larger entries, unlike the existing perturbation theory for (general) Algebraic Riccati Equations. We then discuss some minor but crucial implementation changes to three existing numerical methods so that they can be used to compute \({\Phi}\) as accurately as the input data deserve. Current study is based on a previous paper of the authors’ on M-matrix Sylvester equation for which D = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfa A.S., Xue J., Ye Q.: Accurate computation of the smallest eigenvalue of a diagonally dominant M-matrix. Math. Comp. 71, 217–236 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson B.D.O.: Second-order convergent algorithms for the steady-state Riccati equation. Int. J. Control 28(2), 295–306 (1978)

    Article  MATH  Google Scholar 

  3. Bartels R.H., Stewart G.W.: Algorithm 432: the solution of the matrix equation AXBX = C. Commun. ACM 8, 820–826 (1972)

    Article  Google Scholar 

  4. Benner P., Li R.-C., Truhar N.: On ADI method for Sylvester equations. J. Comput. Appl. Math. 233(4), 1035–1045 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiang C.-Y., King-Wah Chu E., Guo C.-H., Huang T.-M., Lin W.-W., Xu S.-F.: Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case. SIAM J. Matrix Anal. Appl. 31(2), 227–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Demmel J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

  7. Gohberg I., Koltracht I.: Mixed, componentwise, and structured condition numbers. SIAM J. Matrix Anal. Appl. 14(3), 688–704 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Golub G.H., Nash S., Van Loan C.F.: Hessenberg–Schur method for the problem AX + XB = C. IEEE Trans. Autom. Control AC 24, 909–913 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo C., Higham N.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 396–412 (2007)

    Article  MathSciNet  Google Scholar 

  10. Guo C.-H.: Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices. SIAM J. Matrix Anal. Appl. 23, 225–242 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo C.-H., Laub A.J.: On the iterative solution of a class of nonsymmetric algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 22, 376–391 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo C.-H., Iannazzo B., Meini B.: On the doubling algorithm for a (shifted) nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29(4), 1083–1100 (2007)

    Article  MathSciNet  Google Scholar 

  13. Guo X., Lin W., Xu S.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math. 103, 393–412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Juang J.: Existence of algebraic matrix Riccati equations arising in transport theory. Linear Algebra Appl. 230, 89–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Juang J., Lin W.-W.: Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices. SIAM J. Matrix Anal. Appl. 20(1), 228–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin Y., Wei Y.: Normwise, mixed and componentwise condition numbers of nonsymmetric algebraic Riccati equations. J. Appl. Math. Comput. 27, 137–147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. O’Cinneide C.A.: Entrywise perturbation theory and error analysis for Markov chains. Numer. Math. 65, 109–120 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rogers L.: Fluid models in queueing theory and Wiener–Hopf factorization of Markov chains. Ann. Appl. Probab. 4, 390–413 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smith R.A.: Matrix equation XA + BX = C. SIAM J. Appl. Math. 16(1), 198–201 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Varga R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  21. Xue, J., Xu, S., Li, R.-C.: Accurate solutions of M-matrix Sylvester equations. Numer. Math. (2011) doi:10.1007/s00211-011-0420-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Cang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, J., Xu, S. & Li, RC. Accurate solutions of M-matrix algebraic Riccati equations. Numer. Math. 120, 671–700 (2012). https://doi.org/10.1007/s00211-011-0421-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0421-0

Mathematics Subject Classification (2000)

Navigation