Abstract
In this article, a method for constructing nested bases approximations to large-scale fully populated discretizations of integral operators is introduced. The scheme uses only few of the matrix entries for approximating the whole matrix. In this sense, it is similar to the adaptive cross approximation method. However, its computational complexity is improved.
Similar content being viewed by others
References
Anderson C.R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)
Babaev, M.-B.A.: Best approximation by bilinear forms. Mat. Zametki 46(2), 21–33, 158 (1989)
Babaev, M.-B. A.: Exact annihilators and their applications in approximation theory. Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 20(1, Math. Mech.), 17–24, 233 (2000)
Ballani, J., Grasedyck, L., Kluge, M.: Black Box Approximation of Tensors in Hierarchical Tucker Format. Technical Report 57, Max Planck Institute MiS (2010)
Barnes J., Hut P.: A hierarchical \({\mathcal{O}({N} \log{N})}\) force calculation algorithm. Nature 324, 446–449 (1986)
Bebendorf M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)
Bebendorf, M.: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63. Springer, Berlin (2008). ISBN: 978-3-540-77146-3
Bebendorf M., Grzhibovskis R.: Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math. Methods Appl. Sci. (MMAS) 29, 1721–1747 (2006)
Bebendorf M., Kunis S.: Recompression techniques for adaptive cross approximation. J. Integr. Equ. Appl. 21(3), 331–357 (2009)
Bebendorf M., Rjasanow S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)
Börm S.: Approximation of integral operators by \({\mathcal{H}^2}\)-matrices with adaptive bases. Computing 74(3), 249–271 (2005)
Börm S.: Adaptive variable-rank approximation of general matrices. SIAM J. Sci. Comp. 30(1), 148–168 (2007)
Börm S.: Data-sparse approximation of non-local operator by \({\mathcal{H}^2}\) -matrices. Linear Algebra Appl. 422(2-3), 380–403 (2007)
Börm S.: Construction of data-sparse \({\mathcal{H}^2}\) -matrices by hierarchical compression. SIAM J. Sci. Comp. 31(3), 1820–1839 (2009)
Börm S., Grasedyck L.: Hybrid cross approximation of integral operators. Numer. Math. 101(2), 221–249 (2005)
Brandt A., Lubrecht A.A.: Multilevel matrix multiplication and fast solution of integral equations. J. Comput. Phys. 90(2), 348–370 (1990)
Engquist B., Ying L.: Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput 29(4), 1710–1737 (2007) (electronic)
Fredman M.L., Tarjan R.E.: Fibonacci heaps and their uses in improved network optimization problems. J. ACM 34, 596–615 (1987)
Giebermann K.: Multilevel approximation of boundary integral operators. Computing 67, 183–207 (2001)
Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)
Grasedyck L.: Adaptive recompression of \({\mathcal{H} }\)-matrices for BEM. Computing 74, 205–223 (2005)
Grasedyck L., Hackbusch W.: Construction and arithmetics of \({{\mathcal{H}} }\)-matrices. Computing 70, 295–334 (2003)
Greengard L.F., Rokhlin V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)
Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica, 1997. Acta Numerica, vol. 6, pp. 229–269. Cambridge University Press, Cambridge (1997)
Gu M., Eisenstat S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996)
Hackbusch W.: A sparse matrix arithmetic based on \({\mathcal{H}}\)-matrices. Part I: Introduction to \({\mathcal{H} }\) -matrices. Computing 62(2), 89–108 (1999)
Hackbusch W., Börm S.: Data-sparse approximation by adaptive \({\mathcal{H}^2}\) -matrices. Computing 69(1), 1–35 (2002)
Hackbusch, W., Börm, S.: \({\mathcal{H}^2}\)-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43(1–2), 129–143 (2002) [19th Dundee Biennial Conference on Numerical Analysis (2001)]
Hackbusch W., Khoromskij B.N.: A sparse \({\mathcal{H}}\)-matrix arithmetic. Part II: Application to multi-dimensional problems. Computing 64(1), 21–47 (2000)
Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \({\mathcal{H}^2}\) -matrices. In: Bungartz H.-J., Hoppe R.H.W., Zenger Ch. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)
Hackbusch W., Nowak Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)
Micchelli C.A., Pinkus A.: Some problems in the approximation of functions of two variables and n-widths of integral operators. J. Approx. Theory 24(1), 51–77 (1978)
Oseledets I.V., Tyrtyshnikov E.E.: TT-Cross Approximation for multidimensional arrays. Linear Algebra Appl. 432(5), 70–88 (2010)
Sauer Th., Xu Y.: On multivariate Lagrange interpolation. Math. Comp. 64(211), 1147–1170 (1995)
Schneider J.: Error estimates for two-dimensional cross approximation. J. Approx. Theory 162(9), 1685–1700 (2010)
Schöberl J.: NETGEN—an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visual. Sci 1, 41–52 (1997)
Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1–2), 47–57 (1998) [Toeplitz matrices: structures, algorithms and applications (Cortona, 1996)]
Ying L., Biros G., Zorin D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by DFG collaborative research center SFB 611.
Rights and permissions
About this article
Cite this article
Bebendorf, M., Venn, R. Constructing nested bases approximations from the entries of non-local operators. Numer. Math. 121, 609–635 (2012). https://doi.org/10.1007/s00211-012-0449-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-012-0449-9