Skip to main content
Log in

Constructing nested bases approximations from the entries of non-local operators

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this article, a method for constructing nested bases approximations to large-scale fully populated discretizations of integral operators is introduced. The scheme uses only few of the matrix entries for approximating the whole matrix. In this sense, it is similar to the adaptive cross approximation method. However, its computational complexity is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson C.R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput. 13(4), 923–947 (1992)

    Article  MATH  Google Scholar 

  2. Babaev, M.-B.A.: Best approximation by bilinear forms. Mat. Zametki 46(2), 21–33, 158 (1989)

    Google Scholar 

  3. Babaev, M.-B. A.: Exact annihilators and their applications in approximation theory. Trans. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci. 20(1, Math. Mech.), 17–24, 233 (2000)

    Google Scholar 

  4. Ballani, J., Grasedyck, L., Kluge, M.: Black Box Approximation of Tensors in Hierarchical Tucker Format. Technical Report 57, Max Planck Institute MiS (2010)

  5. Barnes J., Hut P.: A hierarchical \({\mathcal{O}({N} \log{N})}\) force calculation algorithm. Nature 324, 446–449 (1986)

    Article  Google Scholar 

  6. Bebendorf M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bebendorf, M.: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63. Springer, Berlin (2008). ISBN: 978-3-540-77146-3

  8. Bebendorf M., Grzhibovskis R.: Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation. Math. Methods Appl. Sci. (MMAS) 29, 1721–1747 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bebendorf M., Kunis S.: Recompression techniques for adaptive cross approximation. J. Integr. Equ. Appl. 21(3), 331–357 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bebendorf M., Rjasanow S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Börm S.: Approximation of integral operators by \({\mathcal{H}^2}\)-matrices with adaptive bases. Computing 74(3), 249–271 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Börm S.: Adaptive variable-rank approximation of general matrices. SIAM J. Sci. Comp. 30(1), 148–168 (2007)

    Article  MATH  Google Scholar 

  13. Börm S.: Data-sparse approximation of non-local operator by \({\mathcal{H}^2}\) -matrices. Linear Algebra Appl. 422(2-3), 380–403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Börm S.: Construction of data-sparse \({\mathcal{H}^2}\) -matrices by hierarchical compression. SIAM J. Sci. Comp. 31(3), 1820–1839 (2009)

    Article  MATH  Google Scholar 

  15. Börm S., Grasedyck L.: Hybrid cross approximation of integral operators. Numer. Math. 101(2), 221–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brandt A., Lubrecht A.A.: Multilevel matrix multiplication and fast solution of integral equations. J. Comput. Phys. 90(2), 348–370 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Engquist B., Ying L.: Fast directional multilevel algorithms for oscillatory kernels. SIAM J. Sci. Comput 29(4), 1710–1737 (2007) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fredman M.L., Tarjan R.E.: Fibonacci heaps and their uses in improved network optimization problems. J. ACM 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  19. Giebermann K.: Multilevel approximation of boundary integral operators. Computing 67, 183–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grasedyck L.: Adaptive recompression of \({\mathcal{H} }\)-matrices for BEM. Computing 74, 205–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grasedyck L., Hackbusch W.: Construction and arithmetics of \({{\mathcal{H}} }\)-matrices. Computing 70, 295–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Greengard L.F., Rokhlin V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Greengard, L.F., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. In: Acta Numerica, 1997. Acta Numerica, vol. 6, pp. 229–269. Cambridge University Press, Cambridge (1997)

  25. Gu M., Eisenstat S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hackbusch W.: A sparse matrix arithmetic based on \({\mathcal{H}}\)-matrices. Part I: Introduction to \({\mathcal{H} }\) -matrices. Computing 62(2), 89–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hackbusch W., Börm S.: Data-sparse approximation by adaptive \({\mathcal{H}^2}\) -matrices. Computing 69(1), 1–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hackbusch, W., Börm, S.: \({\mathcal{H}^2}\)-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43(1–2), 129–143 (2002) [19th Dundee Biennial Conference on Numerical Analysis (2001)]

  29. Hackbusch W., Khoromskij B.N.: A sparse \({\mathcal{H}}\)-matrix arithmetic. Part II: Application to multi-dimensional problems. Computing 64(1), 21–47 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On \({\mathcal{H}^2}\) -matrices. In: Bungartz H.-J., Hoppe R.H.W., Zenger Ch. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Berlin (2000)

  31. Hackbusch W., Nowak Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Micchelli C.A., Pinkus A.: Some problems in the approximation of functions of two variables and n-widths of integral operators. J. Approx. Theory 24(1), 51–77 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oseledets I.V., Tyrtyshnikov E.E.: TT-Cross Approximation for multidimensional arrays. Linear Algebra Appl. 432(5), 70–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sauer Th., Xu Y.: On multivariate Lagrange interpolation. Math. Comp. 64(211), 1147–1170 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schneider J.: Error estimates for two-dimensional cross approximation. J. Approx. Theory 162(9), 1685–1700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schöberl J.: NETGEN—an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visual. Sci 1, 41–52 (1997)

    Article  MATH  Google Scholar 

  37. Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1–2), 47–57 (1998) [Toeplitz matrices: structures, algorithms and applications (Cortona, 1996)]

    Google Scholar 

  38. Ying L., Biros G., Zorin D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bebendorf.

Additional information

This work was supported by DFG collaborative research center SFB 611.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bebendorf, M., Venn, R. Constructing nested bases approximations from the entries of non-local operators. Numer. Math. 121, 609–635 (2012). https://doi.org/10.1007/s00211-012-0449-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0449-9

Mathematics Subject Classification (2000)