Skip to main content
Log in

C 0 elements for generalized indefinite Maxwell equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we develop the C 0 finite element method for a generalized curlcurl-grad div indefinite Maxwell problem in a Lipschitz domain such as nonconvex polygon for which the solution of the problem may be nonsmooth and only have the H r regularity for some r < 1. The ingredients of our method are that two ‘mass-lumping’ L 2 projectors are applied to curl and div operators in the problem and that C 0 linear element or isoparametric bilinear element enriched with one element-bubble on every triangle element or with two-element-bubbles on every quadrilateral element, respectively, is employed for each component of the nonsmooth solution. Due to the fact that the element-bubbles can be statically eliminated at element levels, our method is essentially three-nodes or four-nodes C 0 Lagrange element method. With two Fortin-type interpolations established, a very technical duality argument is elaborated to estimate the error for the indefinite problem. For the nonsmooth solution having the H r regularity where r may vary in the interval [0, 1), we obtain the error bound \({{\mathcal O}(h^r)}\) in an energy norm. Some numerical experiments are performed to confirm the theoretical error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Assous F., Ciarlet P. Jr, Sonnendrücker E.: Resolution of the Maxwell equations in a domain with reentrant corners. M2AN Math. Model. Numer. Anal. 32, 359–389 (1998)

    MATH  Google Scholar 

  4. Bernardi C.: Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26, 1212–1240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernardi C., Girault V.: A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35, 1893–1916 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birman M., Solomyak M.: L 2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42, 75–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnet-Ben Dhia A.-S., Hazard C., Lohrengel S.: A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. Math. 59, 2028–2044 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bossavit A.: Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements. Academic Press, New York (1998)

    MATH  Google Scholar 

  9. Bramble J., Pasciak J.: A new approximation technique for div-curl systems. Math. Comp. 73, 1739–1762 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1996)

    Google Scholar 

  11. Brenner S.C., Li F.-Y., Sung L.-Y.: A locally divergence-free interior penalty method for two-dimensional curl-curl problems. SIAM J. Numer. Anal. 46, 1190–1211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  13. Buffa A., Ciarlet P. Jr, Jamelot E.: Solving electromagnetic eigenvalue problems in polyhedral Domains. Numer. Math. 113, 497–518 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, NY (1978)

    MATH  Google Scholar 

  15. Clément P.: Approximation by finite element functions using local regularization. RAIRO Numer. Anal. 9, 77–84 (1975)

    MATH  Google Scholar 

  16. Costabel M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. M3AS (Math. Methods Appl. Sci.) 12, 365–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Costabel M.: A coercive bilinear form for Maxwell’s equations. Math. Anal. Appl. 157, 527–541 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Costabel M., Dauge M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Costabel M., Dauge M.: Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151, 221–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Costabel M., Dauge M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Meth. Appl. Sci. 22, 243–258 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Costabel M., Dauge M., Nicaise S.: Singularities of Maxwell interface problems. M 2(N Math. Model. Numer. Anal. 33), 627–649 (1999)

    MathSciNet  Google Scholar 

  22. Duan H.Y, Liang G.P.: Nonconforming elements in least-squares mixed finite element methods. Math. Comp. 73, 1–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Duan H.Y., Jia F., Lin P., Tan R.C.E.: The local L2 projected C0 finite element method for Maxwell problem. SIAM J. Numer. Anal. 47, 1274–1303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fernandes P., Gilardi G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7, 957–991 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Girault V.: A local projection operator for quadrilateral finite elements. Math. Comp. 64, 1421–1431 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Girault V., Raviart P.A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  27. Grisvard, P.: Boundary Value Problems in Non-Smooth Domains. University of Maryland, Department of Mathematics, Lecture Notes no. 19 (1980)

  28. Hazard C., Lenoir M.: On the solution of time-harmonic scattering problems for Maxwell’s equations. SIAM J. Math. Anal. 27, 1597–1630 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hazard C., Lohrengel S.: A singular field method for Maxwell’s equations: numerical aspects for 2D magnetostatics. SIAM J. Numer. Anal. 40, 1021–1040 (2003)

    Article  MathSciNet  Google Scholar 

  30. Hiptmair R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Houston P., Perugia I., Schneebeli A., Schötzau D.: Interior penalty method for indefinite time-harmonic Maxwell equations. Numer. Math. 100, 485–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hughes T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover, Mineola, NY (2000)

    MATH  Google Scholar 

  33. Jin J.M.: The Finite Element Method in Electromagnetics (2nd edn). Wiley, New York (2002)

    MATH  Google Scholar 

  34. Lee E.J., Manteuffel T.A.: FOSLL* method for the eddy current problem with three-dimensional edge singularities. SIAM J. Numer. Anal. 45, 787–809 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Meurant G.: Computer Solution of Large Linear Systems. Elsevier, Singapore (1999)

    MATH  Google Scholar 

  36. Monk P.: Finite Element Methods for Maxwell Equations. Clarendon Press, Oxford (2003)

    Book  MATH  Google Scholar 

  37. Morand H., Ohayon R.: Fluid Structure Interaction: Applied Numerical Methods. Wiley, New York (1995)

    Google Scholar 

  38. Schatz A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  39. Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Steinbach O.: On the stability of the L 2 projection in fractional Sobolev spaces. Numer. Math. 88, 367–379 (2000)

    Article  MathSciNet  Google Scholar 

  41. Thomee V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huoyuan Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, H., Lin, P. & Tan, R.C.E. C 0 elements for generalized indefinite Maxwell equations. Numer. Math. 122, 61–99 (2012). https://doi.org/10.1007/s00211-012-0456-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0456-x

Mathematics Subject Classification (2000)

Navigation