Skip to main content
Log in

Sparsity optimized high order finite element functions for H(div) on simplices

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper deals with conforming high-order finite element discretizations of the vector-valued function space H(Div) in 2 and 3 dimensions. A new set of hierarchic basis functions on simplices with the following two main properties is introduced. When working with an affine, simplicial triangulation, first, the divergence of the basis functions is L 2-orthogonal, and secondly, the L 2-inner product of the interior basis functions is sparse with respect to the polynomial degree p. The construction relies on a tensor-product based construction with properly weighted Jacobi polynomials as well as an explicit splitting of the higher-order basis functions into solenoidal and non-solenoidal ones. The basis is suited for fast assembling strategies. The general proof of the sparsity result is done by the assistance of computer algebra software tools. Several numerical experiments document the proved sparsity patterns and practically achieved condition numbers for the parameter-dependent Div - Div problem. Even on curved elements a tremendous improvement in condition numbers is observed. The precomputed mass and stiffness matrix entries in general form are available online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. (eds): Handbook of Mathematical Functions. Dover, NY (1965)

    Google Scholar 

  2. Ainsworth M., Coyle J.: Hierarchical finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58(14), 2103–2130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special functions. In: Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

  4. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods I: the de Rham complex. In: Arnold, D., Bochev, P., Lehoucq, R., Nicolaides, R., Shaskov, M. (eds.) Compatible Spatial Discretizations. The IMA Volumes in Mathematics and its Applications, vol. 142, pp. 23–46. Springer, Berlin (2006)

  5. Babuška, I., Suri, M.: The p- and h-p versions of the finite element method, an overview. Comput. Methods Appl. Mech. Eng. 80(1–3), 5–26 (1990, spectral and high order methods for partial differential equations (Como, 1989))

  6. Bećirović A., Paule P., Pillwein V., Riese A., Schneider C., Schöberl J.: Hypergeometric summation algorithms for high-order finite elements. Computing 78(3), 235–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beuchler S., Pillwein V.: Shape functions for tetrahedral p-fem using integrated Jacobi polynomials. Computing 80, 345–375 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beuchler, S., Pillwein, V.: Completions to sparse shape functions for triangular and tetrahedral p-fem. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W., (eds.) Proceedings of the 17th International Conference on Domain Decomposition Methods in Science and Engineering XVII held at St. Wolfgang/Strobl, Austria, (July 3–7, 2006). Lecture Notes in Computational Science and Engineering, vol. 60, pp. 435–442, Springer, Heidelberg (2008)

  9. Beuchler, S., Pillwein, V., Zaglmayr S.: Sparsity optimized high order finite element functions for H(div) on simplices. Technical Report 2010-04, DK Computational Mathematics, JKU Linz (2010)

  10. Beuchler S., Schöberl J.: New shape functions for triangular p-fem using integrated Jacobi polynomials. Numer. Math. 103, 339–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bossavit, A.: Computational electromagnetism: variational formulation, complementary, edge elements. In: Electromagnetism. Academic Press, London (1989)

  12. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  13. Demkowicz L.: Computing with hp Finite Elements. CRC Press/Taylor & Francis, Boca Raton/ London (2006)

    Book  Google Scholar 

  14. Demkowicz L., Buffa A.: H 1, H(curl) and H(div)-conforming projection-based interpolation in three dimensions. quasi-optimal p-interpolation estimates. Comput. Methods Appl. Mech. Eng. 194, 267–296 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.: Computing with hp-adaptive finite elements. In: Frontiers: three dimensional elliptic and Maxwell problems with applications. Applied Mathematics and Nonlinear Science Series, vol. 2. Chapman & Hall/CRC Press, Boca Raton (2008)

  16. Demkowicz L., Monk P., Vardapetyan L., Rachowicz W.: De Rham diagram for hp finite element spaces. Comput. Math. Appl. 39(7–8), 29–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dubiner M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations. In: Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

  19. Karniadakis G.M., Sherwin S.J.: Spectral/HP Element Methods for CFD. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  20. Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975). Math. Res. Center, Univ. Wisconsin, Publ. No. 35, pp. 435–495. Academic Press, New York (1975)

  21. Melenk J.M., Gerdes K., Schwab C.: Fully discrete hp-finite elements: fast quadrature. Comput. Methods Appl. Mech. Eng. 190, 4339–4364 (1999)

    Article  Google Scholar 

  22. Nédélec J.C.: Mixed finite elements in \({\mathbb{R}^3}\) . Numerische Mathematik 35(35), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nédélec J.C.: A new family of mixed finite elements in \({\mathbb{R}^3}\) . Numerische Mathematik 50(35), 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comp. Phys. 37–80 (1980)

  25. Paule, P., Pillwein, V., Schneider, C., Schöberl, J.: Hypergeometric Summation Techniques for High Order Finite Elements. In: PAMM, vol. 6, pp. 689–690. Wiley InterScience, Weinheim (2006). doi:10.1002/pamm.200610325

  26. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods. Lecture Notes in Mathematics, vol. 606. Berlin (1977)

  27. Schöberl, J., Zaglmayr, S.: High order Nédélec elements with local complete sequence properties. COMPEL 24(2) (2005)

  28. Schwab C.: p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. Clarendon Press, Oxford (1998)

    Google Scholar 

  29. Sherwin S.J.: Hierarchical hp finite elements in hybrid domains. Finite Elem. Anal. Des. 27, 109–119 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sherwin S.J., Karniadakis G.E.: A new triangular and tetrahedral basis for high-order finite element methods. Int. J. Numer. Methods Eng. 38, 3775–3802 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Solin P., Segeth K., Dolezel I.: Higher-Order Finite Element Methods. CRC Press/Chapman & Hall, Boca Raton/London (2003)

    Google Scholar 

  32. Szabo B., Duester A., Rank E.: The p-version of the finite element method. In: Stein, E., Borst, R., Hughes, T.J. (eds) Encyclopedia of Computational Mechanics, Wiley, London (2004)

    Google Scholar 

  33. Tricomi F.G., Vorlesungen über F.G.: Orthogonalreihen. Springer, Berlin (1955)

    MATH  Google Scholar 

  34. Zaglmayr, S.: High Order Finite Elements for Electromagnetic Field Computation. PhD thesis, Johannes Kepler University, Linz, Austria (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Beuchler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beuchler, S., Pillwein, V. & Zaglmayr, S. Sparsity optimized high order finite element functions for H(div) on simplices. Numer. Math. 122, 197–225 (2012). https://doi.org/10.1007/s00211-012-0461-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0461-0

Mathematics Subject Classification

Navigation