Skip to main content
Log in

Stochastic Galerkin techniques for random ordinary differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Over the last decade the stochastic Galerkin method has become an established method to solve differential equations involving uncertain parameters. It is based on the generalized Wiener expansion of square integrable random variables. Although there exist very sophisticated variants of the stochastic Galerkin method (wavelet basis, multi-element approach) convergence for random ordinary differential equations has rarely been considered analytically. In this work we develop an asymptotic upper boundary for the L 2-error of the stochastic Galerkin method. Furthermore, we prove convergence of a local application of the stochastic Galerkin method and confirm convergence of the multi-element approach within this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augustin F., Gilg A., Paffrath M., Rentrop P., Wever U.: Polynomial Chaos for the approximation of uncertainties: chances and limits. Eur. J. Appl. Math. 19, 149–190 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bharucha-Reid, A.T.: Approximate Solution of Random Equations. Elsevier North Holland Inc., North Holland (1979)

  3. Bollhöfer M., Mehrmann V.: Numerische Mathematik, 1st edn. Vieweg Verlag, Berlin (2004)

    Book  MATH  Google Scholar 

  4. Bramble J.H., Hilbert S.R.: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7, 112–124 (1980)

    Article  MathSciNet  Google Scholar 

  5. Canuto C., Kozubek T.: A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numerische Mathematik 107, 257–293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deuflhard P., Bornemann F.: Scientific Computing with Ordinary Differential Equations. Springer, New York (2002)

    Book  MATH  Google Scholar 

  7. Engl H.W., Nashed M.Z.: Stochastic projectional schemes for random linear operator equations of the first and second kinds. Numer. Funct. Anal. Optim. 1, 451–473 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Engl H.W., Römisch W.: Approximate solutions of nonlinear random operator equations: convergence in distribution. Pac. J. Math. 120, 55–77 (1985)

    MATH  Google Scholar 

  9. Ernst, O.G., Mugler, A., Starkloff, H.-J., Ullmann, E.: On the convergence of generalized Polynomial Chaos expansions. ESAIM Math. Model. Numer. Anal. 46, 317–339 (2012)

    Article  MathSciNet  Google Scholar 

  10. Fiedler O., Römisch W.: Weak convergence of approximate solutions of random equations. Numer. Funct. Anal. Optim. 13, 495–511 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fishman G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)

    MATH  Google Scholar 

  12. Fox B.L.: Strategies for Quasi-Monte Carlo. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  13. Ghanem R., Spanos P.D.: Polynomial Chaos in stochastic finite elements. J. Appl. Mech. 57, 197–202 (1990)

    Article  MATH  Google Scholar 

  14. Ghanem R., Spanos P.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  15. Hairer E., Nørsett S.P., Wanner G.: Solving Ordinary Differential Equations 1. Springer, Berlin (1993)

    Google Scholar 

  16. Janson S.: Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  17. Jentzen A., Kloeden P.E.: Pathwise Taylor schemes for random ordinary differential equations. BIT 49, 113–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kloeden P.E., Platen E., Schurz H.: Numerical solution of SDE through computer experiments. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  19. Kloeden P.E., Platen E.: Numerical solution of stochastic differential equations. Springer, Berlin (1999)

    Google Scholar 

  20. Kloeden P.E., Jentzen A.: Pathwise convergent higher order numerical schemes for random ordinary differential equations. Proc R Soc A 463, 2929–2944 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maître O.P.Le., Knio O.M., Najm H.N., Ghanem R.G.: Uncertainty propagation using Wiener–Haar expansions. J. Comput. Phys. 197, 28–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maître O.P.Le., Njam H.N., Ghanem R.G., Knio O.M.: Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197, 502–531 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maître O.P.Le., Knio O.M.: Spectral methods for uncertainty quantification. Springer, New York (2010)

    Book  MATH  Google Scholar 

  24. Loh W.: On latin hypercube sampling. Ann. Stat. 24, 2058–2080 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Matthies H.G., Buchner C.: Finite elements for stochastic media problems. Comput Methods Appl. Mech. Eng. 168, 3–17 (1999)

    Article  MATH  Google Scholar 

  26. Øksendal B.: Stochastic differential equations. Springer, Berlin (2000)

    Google Scholar 

  27. Paffrath, M., Wever, U.: The probabilistic optimizer RODEO. Internal Report Siemens AG (2005)

  28. Paffrath M., Wever U.: Adapted polynomial chaos expansion for failure detection. J. Comput. Phys. 226, 263–281 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pulch R.: Polynomial chaos for multirate partial differential algebraic equations with random parameters. Appl. Numer. Math. 59, 2610–2624 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rößler A.: Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal. 48, 922–952 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schevenels, M., Lombaert, G., Degrande, G.: Application of the stochastic finite element method for Gaussian and non-Gaussian systems. In: Proceedings of ISMA2004, pp 3299–3313 (2004)

  32. Skeel R.D.: Thirteen ways to estimate global error. Numerische Mathematik 48, 1–20 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wan X., Karniadakis G.E.: Multi-element generalized Polynomial Chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28, 901–928 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wiener N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  35. Xiu D., Karniadakis G.E.: The Wiener–Askey Polynomial Chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Augustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustin, F., Rentrop, P. Stochastic Galerkin techniques for random ordinary differential equations. Numer. Math. 122, 399–419 (2012). https://doi.org/10.1007/s00211-012-0466-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0466-8

Mathematics Subject Classification

Navigation