Skip to main content
Log in

Unconditionally stable difference methods for delay partial differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper is concerned with the numerical solution of parabolic partial differential equations with time-delay. We focus in particular on the delay dependent stability analysis of difference methods that use a non-constrained mesh, i.e., the time step-size is not required to be a submultiple of the delay. We prove that the fully discrete system unconditionally preserves the delay dependent asymptotic stability of the linear test problem under consideration, when the following discretization is used: a variant of the classical second-order central differences to approximate the diffusion operator, a linear interpolation to approximate the delay argument, and, finally, the trapezoidal rule or the second-order backward differentiation formula to discretize the time derivative. We end the paper with some numerical experiments that confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker C.T.H., Ford N.J.: Some applications of the boundary-locus method and the method of D-partitions. IMA J. Numer. Anal. 11, 143–158 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellen A., Zennaro M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  3. Bickart T.A.: P-stable and P[α,β]-stable integration interpolation methods in the solution of retarded differential- difference equations. BIT 22, 464–476 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bocharov G.A., Marchuk G.I., Romanyukha A.A.: Numerical solution by LMMs of stiff delay differential systems modelling an immune response. Numer. Math. 73, 131–148 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunner H.: Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge Monographs on Applied and Computational Mathematics, vol. 15. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Diekmann O., Van Gils S.A., Verduin Lunel S.M., Walther H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer, Berlin (1995)

    MATH  Google Scholar 

  7. Guglielmi N.: On the asymptotic stability properties of Runge–Kutta methods for delay differential equations. Numer. Math. 77, 467–485 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guglielmi N.: Delay dependent stability regions of Θ-methods for delay differential equations. IMA J. Numer. Anal. 18, 399–418 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guglielmi N., Hairer E.: Order stars and stability for delay differential equations. Numer. Math. 83, 371–383 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guglielmi N., Hairer E.: Geometric proofs of numerical stability for delay equations. IMA J. Numer. Anal. 21, 439–450 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Higham D., Sarder T.: Existence and stability of fixed points for a discretised nonlinear reaction–diffusion equation with delay. Appl. Numer. Math. 18, 155–173 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang C.: Delay-dependent stability of high order Runge–Kutta methods. Numer. Math. 111, 377–387 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang C., Vandewalle S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays. SIAM J. Sci. Comput. 25, 1608–1632 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. in’t Hout K.J.: A new interpolation procedure for adapting Runge–Kutta methods to delay differential equations.. BIT 32, 634–649 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jaffer, S. K.: Delay-dependent numerical stability of delay differential equations and Kreiss resolvent condition. PhD thesis, Harbin Institute of Technology, Harbin (2001)

  16. Koto T.: A stability property of A-stable natural Runge–Kutta methods for systems of delay differential equations. BIT 34, 262–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koto T.: Stability of θ-methods for delay integro-differential equations. J. Comput. Appl. Math. 161, 393–404 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maset S.: Stability of Runge–Kutta methods for linear delay differential equations. Numer. Math. 87, 355–371 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qiu L., Yang B., Kuang J.: The NGP-stability of Runge–Kutta methods for systems of neutral delay differential equations. Numer. Math. 81, 451–459 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomas J.W.: Numerical Partial Differential Equations: Finite Difference Methods. Springer, New York (1995)

    MATH  Google Scholar 

  21. van der Houwen P.J., Sommeijer B.P., Baker C.T.H.: On the stability of predictor–corrector methods for parabolic equations with delay. IMA J. Numer. Anal. 6, 1–23 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Watanabe D.S., Roth M.G.: The stability of difference formulas for delay differential equations. SIAM J. Numer. Anal. 22, 132–145 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  24. Wu S., Gan S.: Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations. Comput. Math. Appl. 55, 2426–2443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zennaro M.: P-stability of Runge–Kutta methods for delay differential equations. Numer. Math. 49, 305–318 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zubik-Kowal B.: Stability in the numerical solution of linear parabolic equations with a delay term. BIT 41, 191–206 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zubik-Kowal B., Vandewalle S.: Waveform relaxation for functional-differential equations. SIAM J. Sci. Comput. 21, 207–226 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Vandewalle, S. Unconditionally stable difference methods for delay partial differential equations. Numer. Math. 122, 579–601 (2012). https://doi.org/10.1007/s00211-012-0467-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0467-7

Mathematics Subject Classification