Skip to main content
Log in

Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this article we investigate the analysis of a finite element method for solving H(curl; Ω)-elliptic interface problems in general three-dimensional polyhedral domains with smooth interfaces. The continuous problems are discretized by means of the first family of lowest order Nédélec H(curl; Ω)-conforming finite elements on a family of tetrahedral meshes which resolve the smooth interface in the sense of sufficient approximation in terms of a parameter δ that quantifies the mismatch between the smooth interface and the triangulation. Optimal error estimates in the H(curl; Ω)-norm are obtained for the first time. The analysis is based on a δ-strip argument, a new extension theorem for H 1(curl; Ω)-functions across smooth interfaces, a novel non-standard interface-aware interpolation operator, and a perturbation argument for degrees of freedom for H(curl; Ω)-conforming finite elements. Numerical tests are presented to verify the theoretical predictions and confirm the optimal order convergence of the numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ammari H., Buffa A., Nédélec J.-C.: A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60, 1805–1823 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett J.W., Elliott C.M.: Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal. 7, 283–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bossavit A.: Two dual formulations of the 3D eddy–currents problem. COMPEL 4, 103–116 (1985)

    Article  MathSciNet  Google Scholar 

  5. Bossavit A.: Solving Maxwell’s equations in a closed cavity and the question of spurious modes. IEEE Trans. Mag. 26, 702–705 (1990)

    Article  Google Scholar 

  6. Bramble J.H., King J.T.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  Google Scholar 

  7. Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

  8. Burman E., Hansbo P.: Interior penalty stabilized Lagrange multiplier methods for the finite element solution of elliptic interface problems. IMA J. Numer. Anal. 30, 870–885 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan T., Zou J.: A convergence theory of multilevel additive Schwarz methods on unstructured meshes. Numer. Algorithms 13, 365–398 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Z., Zou J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, 1st edn. North-Holland, Amsterdam (1978)

    Google Scholar 

  12. Costabel M., Dauge M., Nicaise S.: Singularities of Maxwell interface problems. Math. Model. Numer. Anal. 33, 627–649 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dirks H.: Quasi-stationary fields for microeletronic applications. Eletrical Eng. 79, 145–155 (1996)

    Article  Google Scholar 

  14. Evans L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  15. Girault V., Raviart P.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  16. Hansbo A., Hansbo P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hiptmair R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiptmair R., Li J.-Z., Zou J.: Real interpolation of spaces of differential forms. Math. Z. 270, 395–402 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hiptmair, R., Li, J.-Z., Zou, J.: Convergence analysis of finite element methods for H(curl)-elliptic interface problems. Report 2009-04, SAM, ETH Zürich, Zürich, Switzerland, http://www.sam.math.ethz.ch/reports/2009/04

  20. Huang J., Zou J.: A mortar element method for elliptic problems with discontinuous coefficients. IMA J Numer. Anal. 22, 549–576 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li J.-Z., Melenk J.M., Wohlmuth B., Zou J.: Convergence analysis of higher order finite element methods for elliptic interface problems. Appl. Numer. Math. 60, 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li Z., Ito K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, Philadelphia (2006)

    Google Scholar 

  23. McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Monk P.: Finite Element Methods for Maxwell’s Equations. Clarendon, Oxford (2003)

    Book  MATH  Google Scholar 

  25. Nédélec J.: Mixed finite elements in \({\mathbb{R}^3}\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Persson P.-O., Strang G.: A simple mesh generator in MATLAB. SIAM Rev. 46, 329–345 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Plum M., Wieners C.: Optimal a priori estimates for interface problems. Numer. Math. 95, 735–759 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Hiptmair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiptmair, R., Li, J. & Zou, J. Convergence analysis of finite element methods for H(curl; Ω)-elliptic interface problems. Numer. Math. 122, 557–578 (2012). https://doi.org/10.1007/s00211-012-0468-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0468-6

Mathematics Subject Classification

Navigation