Abstract
We derive new trace inequalities for NURBS-mapped domains. In addition to Sobolev-type inequalities, we derive discrete trace inequalities for use in NURBS-based isogeometric analysis. All dependencies on shape, size, polynomial degree, and the NURBS weighting function are precisely specified in our analysis, and explicit values are provided for all bounding constants appearing in our estimates. As hexahedral finite elements are special cases of NURBS, our results specialize to parametric hexahedral finite elements, and our analysis also generalizes to T-spline-based isogeometric analysis. We compare the bounding constants appearing in our explicit trace inequalities with numerically computed optimal bounding constants, and we discuss application of our results to a Laplace problem. We finish this paper with a brief exploration of so-called patch-wise trace inequalities for isogeometric analysis.



Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. Academic Press, London (1975)
Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)
Arrieta, J.M., Rodríguez-Bernal, A., Rossi, J.D.: The best Sobolev trace constant as limit of the usual Sobolev constant for small strips near the boundary. Proc. R. Soc. Edinb. Sect. A Math. 138, 223–237 (2008)
Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg, T.W.: Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)
Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: Theory, algorithms, and computations. Comput. Mech. 43, 3–37 (2008)
Bazilevs, Y., da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1–60 (2006)
Bazilevs, Y., Michler, C.M., Calo, V.M., Hughes, T.J.R.: Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Eng. 196, 4853–4862 (2007)
Bazilevs, Y., Michler, C.M., Calo, V.M., Hughes, T.J.R.: Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes. Comput. Methods Appl. Mech. Eng. 199, 780–790 (2010)
Bebendorf, M.: A note on the Poincaré inequality for convex domains. Zeitschrift für Analysis und ihre Anwendungen 22, 751–756 (2003)
Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138, 213–242 (1993)
Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h-p-k\) refinement in isogeometric analysis. Numerische Mathematik 118, 271–305 (2011)
Buffa, A., Sangalli, G., Vázquez, R.: Isogeometric analysis in electromagnetics: B-splines approximation. Comput. Methods Appl. Mech. Eng. 199, 1143–1152 (2010)
Burkhart, D., Hamann, B., Umlauf, G.: Iso-geometric analysis based on Catmull-Clark subdivision solids. Comput. Graph. Forum 29, 1575–1584 (2010)
Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: Toward integration of CAD and FEA. Wiley, New York (2009)
Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)
Dorfel, M.R., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local \(h\)-refinement using T-splines. Comput. Methods Appl. Mech. Eng. 199, 264–275 (2010)
Elguedj, T., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elements. Comput. Methods Appl. Mech. Eng. 197, 2732–2762 (2008)
Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83, 877–898 (2010)
Epschteyn, Y., Rivière, B.: Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206, 843–872 (2007)
Escobar, J.F.: Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37, 687–698 (1988)
Evans, J.A., Bazilevs, Y., Babuška, I., Hughes, T.J.R.: \(n\)-widths, sup-infs, and optimality ratios for the \(k\)-version of the isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)
Gomez, H., Calo, V.M., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)
Harari, I., Hughes, T.J.R.: What are \(C\) and \(h\)? Inequalities for the analysis and design of finite element methods. Comput. Methods Appl. Mech. Eng. 97, 157–192 (1992)
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)
Kiendl, J., Bletzinger, K.-U., Linhard, J., Wüchner, R.: Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)
Lang, S.: Fundamentals of Differential Geometry. Springer-Verlag, Berlin (1999)
Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case II. Revista Matemática. Iberoamericana 1, 45–121 (1985)
Lipton, S., Evans, J.A., Bazilevs, Y., Elguedj, T., Hughes, T.J.R.: Robustness of isogeometric structural discretizations under severe mesh distortion. Comput. Methods Appl. Mech. Eng. 199, 357–373 (2010)
Nitsche, J.A.: Über ein Variationspringzip zur Lösung von Dirichlet-Problemem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universit at Hamburg 36, 9–15 (1971)
Piegl, L., Tiller, W.: The NURBS Book. Springer-Verlag, Berlin (1997)
Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205, 401–407 (2005)
Vesser, A., Verfürth, R.: Explicit upper bounds for dual norms of residuals. SIAM J. Numer. Anal. 47, 2387–2405 (2009)
Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192, 2765–2773 (2003)
Wheeler, M.F.: An elliptic collocation-finite element method with -interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)
Acknowledgments
J.A. Evans and T.J.R. Hughes were partially supported by the Office of Naval Research under Contract No. N00014-08-0992. This support is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Appendix A: An alternate Hölder inequality
Appendix A: An alternate Hölder inequality
Lemma A.1
Let \(D \subset \mathbb R ^d\) denote an open domain for \(d\) a positive integer. If \(f \in L^{\infty }(D)\) and \(g \in L^2(D)\), then
Proof
Let \(f \in L^{\infty }(D)\) and \(g \in L^2(D)\). By construction,
By the classical Hölder Inequality,
\(\square \)
Rights and permissions
About this article
Cite this article
Evans, J.A., Hughes, T.J.R. Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Numer. Math. 123, 259–290 (2013). https://doi.org/10.1007/s00211-012-0484-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-012-0484-6