Abstract
The a posteriori error analysis of conforming finite element discretisations of the biharmonic problem for plates is well established, but nonconforming discretisations are more easy to implement in practice. The a posteriori error analysis for the Morley plate element appears very particular because two edge contributions from an integration by parts vanish simultaneously. This crucial property is lacking for popular rectangular nonconforming finite element schemes like the nonconforming rectangular Morley finite element, the incomplete biquadratic finite element, and the Adini finite element. This paper introduces a novel methodology and utilises some conforming discrete space on macro elements to prove reliability and efficiency of an explicit residual-based a posteriori error estimator. An application to the Morley triangular finite element shows the surprising result that all averaging techniques yield reliable error bounds. Numerical experiments confirm the reliability and efficiency for the established a posteriori error control on uniform and graded tensor-product meshes.









Similar content being viewed by others
References
Bartels, S., Carstensen, C.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids I and II. Math. Comp. 71(945–969), 971–994 (2002)
Beirao da Veiga, L., Niiranen, J., Stenberg, R.: A posteriori error estimates for the Morley plate bending element. Numer. Math. 106, 165–179 (2007)
Beirao da Veiga, L., Niiranen, J., Stenberg, R.: A posteriori error analysis for the Morley plate element with general boundary conditions. Int. J. Numer. Methods Eng. 83, 1–26 (2010)
Brenner, S.C.: A two-level additive Schwarz preconditioner for nonconforming plate elements. Numer. Math. 72(4), 419–447 (1996)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Berlin, New York (2008)
Brenner, S.C., Gudi, T., Sung, L.Y.: An a posteriori error estimator for a quadratic \(C^0\) interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30, 777–798 (2010)
Carstensen, C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)
Carstensen, C., Gedicke, J., Rim, D.: Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J. Comput. Math. 30(4), 337–353 (2012)
Carstensen, C., Hu, J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)
Carstensen, C., Hu, J., Orlando, A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45, 62–82 (2007)
Charbonneau, A., Dossou, K., Pierre, R.: A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem. Numer. Methods Partial Differ. Equ. 13, 93–111 (1997)
Ciarlet, P.G.: The finite element method for elliptic problems, North-Holland (1978); reprinted as SIAM Classics in, Applied Mathematics (2002)
Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77–84 (1975)
Georgoulis, E.H., Houston, P., Virtanen, J.: An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems. IMA J. Numer. Anal. 31, 281–298 (2011)
Grisvard, P.: Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] 22 (1992)
Gudi, T.: Residual-based a posteriori error estimator for the mixed finite element approximation of the biharmonic equation. Numer. Methods Partial Differ. Equ. 27, 315–328 (2011)
Hansbo, P., Larson, M.G.: A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff-Love plate. http://www.math.chalmers.se/Math/Research/Preprints/2008/10.pdf (2008)
Hu, J., Huang, Y.Q., Zhang, S.Y.: The lowest order differentiable finite element on rectangular grids. SIAM J. Numer. Anal. 49, 1350–1368 (2011)
Hu, J., Shi, Z.C.: A new a posteriori error estimate for the Morley element. Numer. Math. 112, 25–40 (2009)
Hu, J., Shi, Z.C., Xu, J.C.: Convergence and optimality of the adaptive Morley element method, Numer. Math., 121, pp. 731–752 (2012). (See J. Hu, Z. C. Shi, J. C. Xu, Convergence and optimality of the adaptive Morley element method, Research Report 19(2009), School of Mathematical Sciences and Institute of Mathematics, Peking University, Also available online from May 2009. http://www.math.pku.edu.cn:8000/var/preprint/7280.pdf
Huang, J.G., Huang, X.H., Xu, Y.F.: Convergence of an adaptive mixed finite element method for Kirchhoff plate bending problems. SIAM J. Numer. Anal. 49, 574–607 (2011)
Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problem. RAIRO Anal. Numer. 1, 9–53 (1985)
Morley, L.S.D.: The triangular equilibrium element in the solutions of plate bending problem. Aero. Quart. 19, 149–169 (1968)
Shi, Z.C.: On the convergence of the incomplete biqudratic nonconforming plate element. Math. Numer. Sinica 8, 53–62 (1986)
Shi, Z.C., Wang, M.: The finite element method. Science Press, Beijing (2010)
Verfürth, R.: A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, New York (1996)
Wang, M., Zhang, S.: Local a priori and a posteriori error estimates of finite elements for biharmonic equation, research report 13. Peking University, School of Mathematical Sciences and Institute of Mathematics, Beijing (2006)
Wang, M., Xu, J.C.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103, 155–169 (2006)
Wang, M., Xu, J.C.: Some tetrahedron nonconforming elements for fourth order elliptic equations. Math. Comp. 76, 1–18 (2007)
Wang, M., Shi, Z.C., Xu, J.C.: Some n-rectangle nonconforming elements for fourth order elliptic equations. J. Comp. Math. 25, 408–420 (2007)
Wu, M.Q.: The incomplete biquadratic nonconforming plate element. J. Suzhou Univ. 1, 20–29 (1983)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Dedicated to Professor Z.-C. Shi in honour of his 80th birthday.
This project was supported by the Chinesisch-Deutsches Zentrum project GZ578. The first two authors were partially supported by the DFG Research Center MATHEON. The research of the third author was supported by the NSFC Project 10971005, partially supported by the NSFC Project 11271035 and by the NSFC Key Project 11031006.
Rights and permissions
About this article
Cite this article
Carstensen, C., Gallistl, D. & Hu, J. A posteriori error estimates for nonconforming finite element methods for fourth-order problems on rectangles. Numer. Math. 124, 309–335 (2013). https://doi.org/10.1007/s00211-012-0513-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-012-0513-5