Skip to main content
Log in

Reorthogonalization for the Golub–Kahan–Lanczos bidiagonal reduction

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Golub–Kahan–Lanczos (GKL) bidiagonal reduction generates, by recurrence, the matrix factorization of \(X \in \mathbb{R }^{m \times n}, m \ge n\), given by

$$\begin{aligned} X = UBV^T \end{aligned}$$

where \(U \in \mathbb{R }^{m \times n}\) is left orthogonal, \(V \in \mathbb{R }^{n \times n}\) is orthogonal, and \(B \in \mathbb{R }^{n \times n}\) is bidiagonal. When the GKL recurrence is implemented in finite precision arithmetic, the columns of \(U\) and \(V\) tend to lose orthogonality, making a reorthogonalization strategy necessary to preserve convergence of the singular values. The use of an approach started by Simon and Zha (SIAM J Sci Stat Comput, 21:2257–2274, 2000) that reorthogonalizes only one of the two left orthogonal matrices \(U\) and \(V\) is shown to be very effective by the results presented here. Supposing that \(V\) is the matrix reorthogonalized, the reorthogonalized GKL algorithm proposed here is modeled as the Householder Q–R factorization of \(\left( \begin{array}{c} 0_{n \times k} \\ X V_k \end{array}\right) \) where \(V_k = V(:,1:k)\). That model is used to show that if \(\varepsilon _M \) is the machine unit and

$$\begin{aligned} \bar{\eta }= \Vert \mathbf{tril }(I-V^T\!~V)\Vert _F, \end{aligned}$$

where \(\mathbf{tril }(\cdot )\) is the strictly lower triangular part of the contents, then: (1) the GKL recurrence produces Krylov spaces generated by a nearby matrix \(X + \delta X\), \(\Vert \delta X\Vert _F = \mathcal O (\varepsilon _M + \bar{\eta }) \Vert X\Vert _F\); (2) singular values converge in the Lanczos process at the rate expected from the GKL algorithm in exact arithmetic on a nearby matrix; (3) a new proposed algorithm for recovering leading left singular vectors produces better bounds on loss of orthogonality and residual errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arioli, M.: Generalized Golub–Kahan bidiagonal reduction and stopping criteria. Technical Report RAL-TR-2010-08, Rutherford Appleton Laboratory, Didcot (2010)

  2. Barlow, J.L., Bosner, N., Drmač, Z.: A new backward stable bidiagonal reduction method. Linear Algebra Appl. 397, 35–84 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barlow, J.L., Smoktunowicz, A., Erbay, H.: Improved Gram–Schmidt downdating methods. BIT 45, 259–285 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benbow, S.J.: Solving generalized least squares problems with LSQR. SIAM J. Matrix Anal. Appl. 21(1), 166–177 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berry, M., Drmač, Z., Jessup, E.: Matrices, vector spaces, and information retrieval. SIAM Rev. 41, 335–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Björck, Å.: A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations. BIT 28, 659–670 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Björck, Å., Paige, C.C.: Loss and recapture of orthogonality in the modified Gram–Schmidt algorithm. SIAM J. Matrix Anal. Appl. 13, 176–190 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bosner, N., Barlow, J.: Block and parallel versions of one-sided bidiagonalization. SIAM J. Matrix Anal. Appl. 29(3), 927–953 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calvetti, D., Reichel, L.: Tikhanov regularization on large linear problems. BIT 43, 263–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daniel, J.W., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and stable algorithms for updating the Gram–Schmidt QR factorization. Math. Comput. 30(136), 772–795 (1976)

    MathSciNet  MATH  Google Scholar 

  11. Eldén, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT 17, 134–145 (1977)

    Article  MATH  Google Scholar 

  12. Golub, G.H., Kahan, W.M.: Calculating the singular values and pseudoinverse of a matrix. SIAM J. Numer. Anal. Ser. B 2, 205–224 (1965)

    MathSciNet  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins Press, Baltimore (1996)

    MATH  Google Scholar 

  14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM Publications, Philadelphia (2002)

    Book  MATH  Google Scholar 

  15. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM Publications, Philadelphia (2008)

    Book  MATH  Google Scholar 

  16. Hnetynkova, I., Plesinger, M., Strakos, Z.: The regularizing effect of Golub–Kahan iterative bidiagonalization and revealing the noise level in the data. BIT 49, 669–696 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mazumber, R., Hastie, T., Tishbarani, R.: Spectral regularization algorithms for learning large incomplete matrices. http://www-stat.stanford.edu/hastie/Papers/SVD_JMLR.pdf

  18. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and least squares problems. ACM Trans. Math. Softw. 8, 43–71 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Paige, C.C.: The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices. PhD thesis, University of London, London (1971)

  20. Paige, C.C.: A useful form of unitary matrix from any sequence of unit 2-norm \(n\)-vectors. SIAM J. Matrix Anal. Appl. 31(2), 565–583 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Paige, C.C., Saunders, M.A.: Algorithm 583 LSQR: sparse linear equations and least squares problems. ACM Trans. Math. Softw. 8, 195–209 (1982)

    Article  MathSciNet  Google Scholar 

  22. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM Publications, Philadelphia (1998) Republication of 1980 book.

  23. Parlett, B.N., Scott, D.S.: The Lanczos algorithm with selective reorthogonalization. Math. Comput. 33, 217–238 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simon, H., Zha, H.: Low rank matrix approximation using the Lanczos bidiagonalization process. SIAM J. Sci. Stat. Comput. 21, 2257–2274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yoo, K., Park, H.: Accurate downdating of a modified Gram–Schmidt QR decomposition. BIT 36, 166–181 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks Lothar Reichel and the referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse L. Barlow.

Additional information

The research of Jesse L. Barlow was supported by the National Science Foundation under Grant No. CCF-0429481 and CCF-1115704.

Appendix: Proof of bound on \(\Vert \mathbf{r }_k\Vert _2\)

Appendix: Proof of bound on \(\Vert \mathbf{r }_k\Vert _2\)

Proof of Lemma 3.1

We have that, in floating point arithmetic,

$$\begin{aligned} \mathbf{r }_k&= \mathbf{fl }(X^T \mathbf{u }_k -\gamma _k \mathbf{v }_k )\\&= X^T \mathbf{u }_k -\gamma _k \mathbf{v }_k + \delta \mathbf{r }_k \end{aligned}$$

where

$$\begin{aligned} \Vert \delta \mathbf{r }_k\Vert _2&\le \varepsilon _M ((m+1) \Vert X\Vert _F\Vert \mathbf{u }_k\Vert _2 + |\gamma _k|\Vert \mathbf{v }_k\Vert _2 ) {+ \mathcal O (\varepsilon _M ^2 )}\\&= \varepsilon _M ((m+1) \Vert X\Vert _F + |\gamma _k|) {+ \mathcal O (\varepsilon _M ^2 )}. \end{aligned}$$

We note that from (4.39) and (4.40), we have

$$\begin{aligned} \overline{W}_k \left( \begin{array}{c} B_k \\ 0 \end{array}\right) \mathbf{e }_k = \left( \begin{array}{c} 0 \\ X\mathbf{v }_k \end{array}\right) + \delta C_k \mathbf{e }_k \end{aligned}$$

and thus (using the convention that \(\phi _1 =0\)),

$$\begin{aligned} |\gamma _k |&\le \left\| \left( \begin{array}{c} \phi _k \\ \gamma _k \end{array}\right) \right\| _{2}\\&\le \Vert X\mathbf{v }_k\Vert _2 +\Vert \delta \overline{C}_k \mathbf{e }_k\Vert _2\\&\le \Vert X \mathbf{v }_k\Vert _2 + \Vert X\Vert _F [ f_3(m,n,k)\varepsilon _M + f_2(k) \bar{\eta }_k] + \mathcal O (\varepsilon _M ^2 +\bar{\eta }_k^2) \\&\le \Vert X \Vert _2 + \Vert X\Vert _F [ f_3(m,n,k)\varepsilon _M + f_2(k) \bar{\eta }_k] + \mathcal O (\varepsilon _M ^2 +\bar{\eta }_k^2). \end{aligned}$$

Therefore, since \(\varepsilon _M \bar{\eta }_k = \mathcal O (\varepsilon _M ^2 + \bar{\eta }_k^2)\)

$$\begin{aligned} \Vert \delta \mathbf{r }_k\Vert _2 \le \varepsilon _M (m+2) \Vert X\Vert _F +\mathcal O (\varepsilon _M ^2+ \bar{\eta }_k^2). \end{aligned}$$

Thus

$$\begin{aligned} \Vert \mathbf{r }_k \Vert _2&\le \Vert X^T \mathbf{u }_k\Vert _2 + |\gamma _k| + \Vert \delta \mathbf{r }_k\Vert _2 \\&\le 2\Vert X\Vert _2+(\varepsilon _M (m+2)+ f_3(m,n,k)\varepsilon _M + f_2(k) \bar{\eta }_k )\Vert X\Vert _F+ \mathcal O (\varepsilon _M ^2+ \bar{\eta }_k^2)) \\&= 2\Vert X\Vert _2 + \mathcal O (\varepsilon _M +\bar{\eta }_k).\\ \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlow, J.L. Reorthogonalization for the Golub–Kahan–Lanczos bidiagonal reduction. Numer. Math. 124, 237–278 (2013). https://doi.org/10.1007/s00211-013-0518-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0518-8

Mathematics Subject Classification