Skip to main content
Log in

Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we introduce and analyze a new mixed finite element method for the two-dimensional Brinkman model of porous media flow with mixed boundary conditions. We use a dual-mixed formulation in which the main unknown is given by the pseudostress. The original velocity and pressure unknowns are easily recovered through a simple postprocessing. In addition, since the Neumann boundary condition becomes essential, we impose it in a weak sense, which yields the introduction of the trace of the fluid velocity over the Neumann boundary as the associated Lagrange multiplier. We apply the Babuška–Brezzi theory to establish sufficient conditions for the well-posedness of the resulting continuous and discrete formulations. In particular, a feasible choice of finite element subspaces is given by Raviart–Thomas elements of order \(k \ge 0\) for the pseudostress, and continuous piecewise polynomials of degree \(k + 1\) for the Lagrange multiplier. We also derive a reliable and efficient residual-based a posteriori error estimator for this problem. Suitable auxiliary problems, the continuous inf-sup conditions satisfied by the bilinear forms involved, a discrete Helmholtz decomposition, and the local approximation properties of the Raviart–Thomas and Clément interpolation operators are the main tools for proving the reliability. Then, Helmholtz’s decomposition, inverse inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are employed to show the efficiency. Finally, several numerical results illustrating the performance and the robustness of the method, confirming the theoretical properties of the estimator, and showing the behaviour of the associated adaptive algorithm, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)

    MATH  Google Scholar 

  2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element method for plane elasticity. Jpn. J. Appl. Math. 1, 347–367 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold, D.N., Douglas, J., Gupta, ChP: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45(1), 1–22 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. In: Aziz, A.K. (ed.) The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press, New York (1972)

    Google Scholar 

  6. Babuška, I., Gatica, G.N.: On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differ. Equ. 19(2), 192–210 (2003)

    Article  MATH  Google Scholar 

  7. Barrios, T.P., Gatica, G.N., González, M., Heuer, N.: A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity. ESAIM Math. Model. Numer. Anal. 40(5), 843–869 (2006)

    Article  MATH  Google Scholar 

  8. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

  9. Burman, E., Hansbo, P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198(1), 35–51 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42(2), 843–859 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cai, Z., Starke, G.: Least-squares methods for linear elasticity. SIAM J. Numer. Anal. 42(2), 826–842 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cai, Z., Tong, Ch., Vassilevski, P.S., Wang, Ch.: Mixed finite element methods for incompressible flow: stationary Stokes equations. Numer Methods Partial Differ. Equ. 26(4), 957–978 (2009)

    MathSciNet  Google Scholar 

  13. Carstensen, C.: An a posteriori error estimate for a first-kind integral equation. Math. Comput. 66(217), 139–155 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66(218), 465–478 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carstensen, C., Dolzmann, G.: A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81(2), 187–209 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  17. Clément, P.: Approximation by finite element functions using local regularisation. RAIRO Model. Math. et Anal. Numer. 9, 77–84 (1975)

    MATH  Google Scholar 

  18. Ervin, V.J., Howell, J.S., Stanculescu, I.: A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 197(33–40), 2886–2900 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Figueroa, L., Gatica, G.N., Heuer, N.: A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows. Comput. Methods Appl. Mech. Eng. 198(2), 280–291 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Figueroa, L.E., Gatica, G.N., Márquez, A.: Augmented mixed finite element methods for the stationary Stokes Equations. SIAM J. Sci. Comput. 31(2), 1082–1119 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gatica, G.N.: A note on the efficiency of residual-based a-posteriori error estimators for some mixed finite element methods. Electron. Trans. Numer. Anal. 17, 218–233 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Gatica, G.N.: Analysis of a new augmented mixed finite element method for linear elasticity allowing \(\mathbb{RT}_0-\mathbb{P}_1-\mathbb{P}_0\) approximations. ESAIM Math. Model. Numer. Anal. 40(1), 1–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gatica, G.N., González, M., Meddahi, S.: A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. I: a priori error analysis. Comput. Methods Appl. Mech. Eng. 193(9–11), 881–892 (2004)

    Article  MATH  Google Scholar 

  24. Gatica, G.N., Hsiao, G., Meddahi, S.: A residual-based a posteriori error estimator for a two-dimensional fluid–solid interaction problem. Numer. Math. 114(1), 63–106 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gatica, G.N., Márquez, A., Meddahi, S.: An augmented mixed finite element method for 3D linear elasticity problems. J. Comput. Appl. Math. 231(2), 526–540 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gatica, G.N., Márquez, A., Sánchez, M.: Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Eng. 199(17–20), 1064–1079 (2010)

    Article  MATH  Google Scholar 

  27. Gatica, G.N., Márquez, A., Sánchez, M.: A priori and a posteriori error analyses of a velocity–pseudostress formulation for a class of quasi-Newtonian Stokes flows. Comput. Methods Appl. Mech. Eng. 200(17–20), 1619–1636 (2011)

    Article  MATH  Google Scholar 

  28. Gatica, G.N., Oyarzúa, R., Sayas, F.J.: Analysis of fully-mixed finite element methods for the Stokes–Darcy coupled problem. Math. Comput. 80(276), 1911–1948 (2011)

    Article  MATH  Google Scholar 

  29. Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations. In: Theory and Algorithms. Springer, Berlin (1986)

  30. Hansbo, P., Juntunen, M.: Weakly imposed Dirichlet boundary conditions for the Brinkman model of porous media flow. Appl. Numer. Math. 59(6), 1274–1289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Howell, J.S.: Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients. J. Comput. Appl. Math. 231(2), 780–792 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Juntunen, M., Stenberg, R.: Analysis of finite element methods for the Brinkman problem. Calcolo 47(3), 129–147 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lions, J.-L., Magenes, E.: Problèmes aux Limites non Homogènes et Applications I. Dunod, Paris (1968)

    Google Scholar 

  35. Mc Lean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, London (2000)

    Google Scholar 

  36. Márquez, A., Meddahi, S., Sayas, F.-J.: Strong coupling of finite element methods for the Stokes–Darcy problem. arXiv:1203.4717v1[math.NA]

  37. Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967)

    MATH  Google Scholar 

  38. Prössdorf, S., Silbermann, B.: Numerical Analysis for Integral and Related Operator Equations. Birkhäuser, Basel (1991)

    Google Scholar 

  39. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Heidelberg (1996)

  40. Roberts, J.E., Thomas, J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis. Finite Element Methods (Part 1), vol. II. Nort-Holland, Amsterdam (1991)

  41. Verfürth, R.: A posteriori error estimation and adaptive-mesh-refinement techniques. J. Comput. Appl. Math. 50(1–3), 67–83 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  42. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive-Mesh-Refinement Techniques. Wiley, Chichester (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel N. Gatica.

Additional information

This research was partially supported by BASAL project CMM, Universidad de Chile, by Centro de Investigación en Ingeniería Matemática (CI\(^2\)MA), Universidad de Concepción, by CONICYT-Chile through project Anillo ACT1118 (ANANUM) and the Fondecyt project 1080392, and by Dirección de Investigación, Universidad Católica de la Santísima Concepción.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatica, G.N., Gatica, L.F. & Márquez, A. Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126, 635–677 (2014). https://doi.org/10.1007/s00211-013-0577-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0577-x

Mathematics Subject Classification (2000)

Navigation